糯米文學吧

位置:首頁 > 文藝 > 音響師

聲學原理與音響技術

音響師3.06W

聲音是人類最早研究的物理現象之一,聲學是物理學中歷史最悠久而當前仍在前沿的唯一分支學科。下面是小編為大家分享聲學原理與音響技術,歡迎大家閲讀瀏覽。

聲學原理與音響技術

  (1)聲學歷史

1915年,有一個美國人名叫 ham將一個當時的電話收聽器套在一個播放唱片音響的號角上,而聲音可以給一羣在舊金山市慶祝聖誕的羣眾聽時,電聲學就誕生了。

當第一次世界大戰結束之後,在美國哈定總統(Harding)就職典禮上,美國貝爾公司把電話的動圈收聽器連接在當時的唱片唱機的號角上,就能夠把聲音傳給觀看總統就職典禮的一大羣羣眾,因此就產生了很多專業的音響研究及開發了擴聲工程這門學問。

著名科學家英國的卡爾文勛爵常常説:“當你度量你所述的事物,而能用數字來表達它,你對這事物已有些知識。但如果你不能用數字來表達它,那麼你的知識仍然是簡陋的和不完滿的;對任何事物而言,這可能是知識的始源,但你的意念還未達到科學的境界。”

  (2)錄音室音響與現場音響的區別

現場音響跟錄音室音響的要求是不同的,所以有很多器材也是不同的。

例如在錄音室內所用的調音台,它們的每路輸入都有多個參數均衡,讓錄音師可以把每路輸入的音源儘量做最精密地微調,務求達到最好的音源效果。一個用來做現場音響的調音台,通常在它的每路輸入,均衡都是比較簡單的。因為很多時候,現場調音師根本就沒有很多時間把每路的音源做很仔細地微調,而在現場音響的調音台每路的音量控制推杆,它們除了可以把音量做衰減外,也可以增益10—14 dB。如果做錄音室用的調音台,這推杆很多時候是不需要做增益的,所以這推杆的英文名稱就是fader,意思就是衰減器。用在現場音響的大功率功放,它們都會有風扇作為散熱用途,因為現場音響的功放是常常在最大功率輸出的情況下工作,並且有很多時候是在户外做現場音響時,周圍的温度可能相當高。如果在錄音室內,通常都一定會有空調,温度當然不會太高,而錄音室內的功放,主要是用來推監聽音箱用的,當然不需要輸出很大的功率,所以功放只需要用普通的散熱器,就可以把很小的熱量散走。如果功放裝有風扇的話,風扇發出來的聲音反而造成噪音,所以在錄音室內的功放基本上是不需要風扇的。

現場音響所用的音箱,為着要把很大的聲壓傳播繪在遠距離的觀眾,所以它們是需要很高效率擴聲,但在錄音室內所用的監聽音箱,是錄音師用來監聽聲源或錄音的最後結果,錄音師是坐在距監聽音箱很近的地方來監聽,所以監聽音箱是一種近音場的音箱,需要高靈敏度,跟現場音響音箱是完全不同的。

  (3)音頻與波長的`關係

很多現場調音師都沒有理會到音頻與波長的關係,其實這是很重要的:音頻及波長與聲音的速度是有直接的關係。在海拔空氣壓力下,21攝氏温度時,聲音速度為344m/s,而國內的調音師,他們常用的聲音速度是34Om/s,這個是在15攝氏度的温度時聲音的速度,但大家最主要記得就是聲音的速度會隨着空氣温度及空氣壓力而改變的,温度越低,空氣裏的分子密度就會增高,所以聲音的速度就會下降,而如果在高海拔的地方做現場音響,因為空氣壓力減少,空氣內的分子變得稀少,聲音速度就會增加。音頻及波長與聲音的關係是:波長=聲音速度/頻率; λ=v/f,如果假定音速是344 m/s時,100Hz的音頻的波長就是3.44 m,1000hz(即lkHz)的波長就是34.4cm,而一個20kHz的音頻波長為1.7cm。

  (4)音箱的高、中、低頻率

我們怎樣計算這音箱的高、中、低頻率呢?

首先我們要計算這音箱面板的對角長度,是2的方根=1.414m,任何頻率的l/4波長是超過1.414m時,對這音箱來説它就是低頻;如果一個頻率的 l/4波長是1.414m時,波長就是4×1.414m=5.656m,這頻率=344m/s÷5.656m=60.8/s=60.8Hz,所以任何音頻低於60.8Hz時,對這音箱來説就是它的低頻率。當60.8Hz或更低的頻率從這音箱傳播出來時,它們的擴散形象是球型的,等於如果我們把這音箱懸掛在一個房間中間時,這些頻率的音量在音箱的前後左右及上下所發出來的聲壓都是差不多的,放出來的聲音變成沒有方向性。當某頻率的l/4波長是小於音箱面板的對角長度,但這波長又大於揚聲器的半徑時,這段頻率就是這音箱的中頻率。例如我們現在是用一個18寸單元,這單元的半徑為9寸,就是22.86cm=0.2286m,這個音頻為344m/s÷0.2286m=1505Hz,從60.8Hz-1505HZ頻就是這音箱的中頻率。中頻率從這音箱所擴散出來的形狀是半球形的,即如果我們把這段頻率從剛才懸掛在房間中心的音箱放出來時,聲音從音箱面板擴散出來的形狀是半球形。在音箱後面是聽不到這段頻率的聲音。

1505Hz及更高的頻率,對這音箱來説就是它的高頻率。高頻率從音箱擴散出來的聲音形狀是錐形的,頻率越高,錐的形狀越窄。通常如果頻率超過開始高音頻的4倍時,聲音擴散出來的形狀會慢慢變成一條直線而不擴散,如果不是坐在對正單元的位置,就聽不到這些高頻率。所以很多高頻率單元如果是紙盆型的話,這紙盆的直徑是很小的,把這音箱的高頻下限盡量提高,希望能夠使高頻擴散的寬度增加。

  (5)各類不同的音場

當一個紙盆揚聲器接受了從功放傳過來的信號後,紙盆就會作出前後的搖動,當紙盆向前推進時,紙盆撞擊到它前面的空氣分子,在紙盆前面的空氣就會增加壓力,這些分子就會繼續向前推進,碰撞它們前面的空氣分子,造成輕微的高氣壓。當紙盆向後退時,紙盆前面的空氣分子就會產生輕微的真空,然後這些分子會跟着紙盆的後退,造成這裏的空氣有輕微的壓力減少。

但在紙盆前面的空氣是剛剛被紙盆的動作搖動,不能達到空氣本身的彈力,這時我們便要看這頻率的波長,聲音是要直到離開紙盆的距離有2.5倍波長時,這些空氣才發揮出造成聲音的彈力。例如一個100Hz的頻率,它的波長是3.44米,所以聲音要離開紙盆2.5×3.44米=8.6米之外,才是真正的這個100Hz的聲音。如果用100Hz來算,離開紙盆的距離還沒達到8.6米就為100Hz的近音場,而超過8.6米才是100Hz的遠音場。當説到揚聲器的遠近音場時,最主要是注意到頻率及它的波長,而不是單純看離開音箱多遠就是等於遠或近音場,最主要就是記得我們當欣賞音樂時,是要在遠音場的位置,而不是在近音場的位置。

  (6)直接音場、反射音場、不直接音場

當揚聲器在一個房間內發出聲音,聽眾可以聽到直接從揚聲器傳過來的聲音,這就是直接音場,但也可以聽到從牆、天花板及地板所反射過來的聲音,這就叫做反射音場。聽眾聽到越多的直接音場的聲音,反射音場的聲音就越小時,這聲音就越好,因為直接音場的聲音是可以控制的,但反射音場的聲音是不能控制的,只會把直接音場發出來的聲音加上渲染,把原本聲音的清晰度底減低,所以坐得離音箱比較近的聽眾就會感覺到好一點的音響效果,而坐在後面的聽眾很可能是他們聽到的反射音場聲音比直接音場聲音更大,音響效果便會比較差及清晰度降低。

  (7)界面干擾

當我們選擇放置音箱的位置時,很重要的一環是要注意到音箱所發出來的聲音是會受到它旁邊的界面影響而造成干擾。例如放在台口兩旁的主音箱,它們的低音紙盆離開地面及旁邊的牆壁如果是大約在1米的時候,一個4米波長的音頻就會受到這兩個界面的干擾。一個4米波長的頻率是86Hz(344m/s ÷ 4m= 86Hz),當86HZ的聲音從音箱放出來時,大的空氣壓力在1/4周內剛巧碰到地面及牆壁,再過l/4周就反射回到音箱的紙盆面前,但這個時候剛巧紙盆要後退,原來從地面及牆壁反射過來的大空氣壓力就會被紙盆後退的動作抵消很多,造成失去了很重要的低音。如果遇到這個情況,就應該把音箱向台後退0.5-1米,讓音箱所發出來的聲音不能直接射到地面上,而如果可以把音箱移到靠近兩邊的牆壁時,更可利用牆壁的反射製做出更大的音量。80-100Hz這段頻率是很重要的,它是我們肺部空間的共鳴點,也是低音鼓的共鳴頻率,如果是因為不瞭解界面干擾而擺錯了音箱放置的位置,實在是很不值得的。

  (8)高、低音效果

我們很難指定某一頻率以上為高音或某頻率以下為低音,我們常常説人的聽覺是從20Hh-20KHz,但20kHz的頻率是很少人能夠聽到的,通常只有20歲以下的青年人,他們的耳朵沒有受到任何的損壞時才可以聽得到。如果做聽覺測驗,最高的測聽頻率只是8 kHz。當聲音傳出去時,高頻率是比低頻率衰減快得多,如果用1kHz跟10kHz做比較時,當聲音跑了100米後,10kHz的『頻率比起IkHz的音量會衰減30-35dB的。比起低頻率,高頻率聲音是比較有方向性的。高頻率的聲音從單元跑了出來後,如果受到物體的阻擋,高音就不能再傳過去,這個是跟低頻率有很大的不同,因為高頻率的波長是比較短,受到物體阻擋之後不會轉彎,但低頻率的波長是比較長,所以很多時候就算有物體在前面阻擋,低頻率也可以轉彎過去。例如有些專業音箱的設計是把一個高音號角放在它的低音單元前面,但對這個低音單元所發出來的低頻率,它根本就看不到前面是有什麼東西阻擋聲音似的,所以低頻率可以照樣傳過去。

從我們的聽覺上來説,我們是需要聽到高頻率的聲音來辨別各類不同的聲音,但如果單純是講人的談話聲時,我們只需要聽到4kHz及以下的頻率,就能馬上辨別是什麼人在説話。例如電話的聲音傳送,高頻只達到4kHz,所以有時候當一個很久都沒有和你談話的人,當他打電話給你時,只要説:【喂】,你就馬上便可以鑑別他是你很久都沒有談過話的朋友的聲音。我們聽高頻也有方向性,即是我們能夠辨別高頻聲音來源的方向。因為高頻的聲音傳到我們兩個耳朵時,已經有了很細微的時間差,所以它們來到耳朵的時候有不同的相位改變,我們就藉着這改變了的相位可以鑑定聲音的相位。

標籤:音響技術 聲學