糯米文學吧

位置:首頁 > 範文 > 校園

高三數學分析重要知識點總結

校園1.81W

在平日的學習中,相信大家一定都接觸過知識點吧!知識點就是學習的重點。還在為沒有系統的知識點而發愁嗎?以下是小編幫大家整理的高三數學分析重要知識點總結,歡迎閲讀,希望大家能夠喜歡。

高三數學分析重要知識點總結

高三數學分析重要知識點總結1

1.課程內容:

必修課程由5個模塊組成:

必修1:集合、函數概念與基本初等函數(指、對、冪函數)

必修2:立體幾何初步、平面解析幾何初步。

必修3:算法初步、統計、概率。

必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。

必修5:解三角形、數列、不等式。

以上是每一個高中學生所必須學習的。

上述內容覆蓋了高中階段傳統的數學基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發生、發展過程和實際應用,而不在技巧與難度上做過高的要求。

此外,基礎內容還增加了向量、算法、概率、統計等內容。

2.重難點及考點:

重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數

難點:函數、圓錐曲線

大學聯考相關考點:

⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件

⑵函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用

⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的應用

⑷三角函數:有關概念、同角關係與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用

⑸平面向量:有關概念與初等運算、座標運算、數量積及其應用

⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用

⑺直線和圓的方程:直線的方程、兩直線的位置關係、線性規劃、圓、直線與圓的位置關係

⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關係、軌跡問題、圓錐曲線的應用

⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、稜錐、球、空間向量

⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用

⑾概率與統計:概率、分佈列、期望、方差、抽樣、正態分佈

⑿導數:導數的概念、求導、導數的應用

⒀複數:複數的概念與運算

①正稜錐各側稜相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正稜錐的斜高).

②正稜錐的高、斜高和斜高在底面內的射影組成一個直角三角形,正稜錐的高、側稜、側稜在底面內的射影也組成一個直角三角形.

⑶特殊稜錐的頂點在底面的射影位置:

①稜錐的側稜長均相等,則頂點在底面上的射影為底面多邊形的外心.

②稜錐的側稜與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.

③稜錐的各側面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內心.

④稜錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內心.

⑤三稜錐有兩組對稜垂直,則頂點在底面的射影為三角形垂心.

⑥三稜錐的三條側稜兩兩垂直,則頂點在底面上的射影為三角形的垂心.

⑦每個四面體都有外接球,球心0是各條稜的中垂面的交點,此點到各頂點的距離等於球半徑;

⑧每個四面體都有內切球,球心

是四面體各個二面角的平分面的交點,到各面的距離等於半徑.

[注]:i.各個側面都是等腰三角形,且底面是正方形的稜錐是正四稜錐.(×)(各個側面的等腰三角形不知是否全等)

ii.若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直.

簡證:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知則.

iii.空間四邊形OABC且四邊長相等,則順次連結各邊的中點的四邊形一定是矩形.

iv.若是四邊長與對角線分別相等,則順次連結各邊的中點的四邊是一定是正方形.

簡證:取AC中點,則平面90°易知EFGH為平行四邊形

EFGH為長方形.若對角線等,則為正方形.

立體幾何初步

(1)稜柱:

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側稜平行且相等;平行於底面的截面是與底面全等的多邊形。

(2)稜錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等

表示:用各頂點字母,如五稜錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

(3)稜台:

定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分

分類:以底面多邊形的邊數作為分類的標準分為三稜態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側稜交於原稜錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一週所成的曲面所圍成的幾何體

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一週形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

(1)先看“充分條件和必要條件”

當命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這裏由p=>q,得出p為q的充分條件是容易理解的。

但為什麼説q是p的必要條件呢?

事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是説,q對於p是必不可少的,因而是必要的。

(2)再看“充要條件”

若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q

(3)定義與充要條件

數學中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是説,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。

顯然,一個定理如果有逆定理,那麼定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。

“充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”。“僅當”表示“必要”。

(4)一般地,定義中的條件都是充要條件,判定定理中的'條件都是充分條件,性質定理中的“結論”都可作為必要條件。

1.函數的奇偶性

(1)若f(x)是偶函數,那麼f(x)=f(-x);

(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用於求參數);

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所給函數的解析式較為複雜,應先化簡,再判斷其奇偶性;

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

2.複合函數的有關問題

(1)複合函數定義域求法:若已知的定義域為[a,b],其複合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)複合函數的單調性由“同增異減”判定;

3.函數圖像(或方程曲線的對稱性)

(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;

(6)函數y=f(x-a)與y=f(b-x)的圖像關於直線x=對稱;

4.函數的週期性

(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恆成立,則y=f(x)是週期為2a的周期函數;

(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是週期為2︱a︱的周期函數;

(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是週期為4︱a︱的周期函數;

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是週期為2的周期函數;

(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函數y=f(x)是週期為2的周期函數;

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是週期為2的周期函數;

5.方程k=f(x)有解k∈D(D為f(x)的值域);

6.a≥f(x)恆成立a≥[f(x)]max,;a≤f(x)恆成立a≤[f(x)]min;

7.(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符號由口訣“同正異負”記憶;

(4)alogaN=N(a>0,a≠1,N>0);

8.判斷對應是否為映射時,抓住兩點:

(1)A中元素必須都有象且;

(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;

9.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

10.對於反函數,應掌握以下一些結論:

(1)定義域上的單調函數必有反函數;

(2)奇函數的反函數也是奇函數;

(3)定義域為非單元素集的偶函數不存在反函數;

(4)周期函數不存在反函數;

(5)互為反函數的兩個函數具有相同的單調性;

(6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

11.處理二次函數的問題勿忘數形結合

二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關係;

12.依據單調性

利用一次函數在區間上的保號性可解決求一類參數的範圍問題;

13.恆成立問題的處理方法

(1)分離參數法;

(2)轉化為一元二次方程的根的分佈列不等式(組)求解;

高三數學分析重要知識點總結2

大學聯考數學導數知識點

(一)導數第一定義

設函數y = f(x)在點x0的某個領域內有定義,當自變量x在x0處有增量△x(x0 + △x也在該鄰域內)時,相應地函數取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y = f(x)在點x0處可導,並稱這個極限值為函數y = f(x)在點x0處的導數記為f(x0),即導數第一定義

(二)導數第二定義

設函數y = f(x)在點x0的某個領域內有定義,當自變量x在x0處有變化△x(x — x0也在該鄰域內)時,相應地函數變化△y = f(x)— f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y = f(x)在點x0處可導,並稱這個極限值為函數y = f(x)在點x0處的導數記為f(x0),即導數第二定義

(三)導函數與導數

如果函數y = f(x)在開區間I內每一點都可導,就稱函數f(x)在區間I內可導。這時函數y = f(x)對於區間I內的每一個確定的x值,都對應着一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數y = f(x)的導函數,記作y,f(x),dy/dx,df(x)/dx。導函數簡稱導數。

(四)單調性及其應用

1。利用導數研究多項式函數單調性的一般步驟

(1)求f¢(x)

(2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恆成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恆成立,則f(x)在(a,b)上是減函數

2。用導數求多項式函數單調區間的一般步驟

(1)求f¢(x)

(2)f¢(x)>0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間

高中數學重難點知識點

高中數學包含5本必修、2本選修,(理)包含5本必修、3本選修,每學期學習兩本書。

必修一:1、集合與函數的概念(這部分知識抽象,較難理解)2、基本的初等函數(指數函數、對數函數)3、函數的性質及應用(比較抽象,較難理解)

必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和麪面角

這部分知識是高一學生的難點,比如:一個角實際上是一個鋭角,但是在圖中顯示的鈍角等等一些問題,需要學生的立體意識較強。這部分知識大學聯考佔22———27分

2、直線方程:大學聯考時不單獨命題,易和圓錐曲線結合命題

3、圓方程:

必修三:1、算法初步:大學聯考必考內容,5分(選擇或填空)2、統計:3、概率:大學聯考必考內容,09年理科佔到15分,文科數學佔到5分

必修四:1、三角函數:(圖像、性質、高中重難點,)必考大題:15———20分,並且經常和其他函數混合起來考查

2、平面向量:大學聯考不單獨命題,易和三角函數、圓錐曲線結合命題。09年理科佔到5分,文科佔到13分

必修五:1、解三角形:(正、餘弦定理、三角恆等變換)大學聯考中理科佔到22分左右,文科數學佔到13分左右2、數列:大學聯考必考,17———22分3、不等式:(線性規劃,聽課時易理解,但做題較複雜,應掌握技巧。大學聯考必考5分)不等式不單獨命題,一般和函數結合求最值、解集。

高三數學分析重要知識點總結3

一、集合與簡易邏輯

1、集合的元素具有確定性、無序性和互異性。

2、對集合,時,必須注意到“極端”情況:或;求集合的子集時是否注意到是任何集合的子集、是任何非空集合的真子集。

3、判斷命題的真假關鍵是“抓住關聯字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

4、“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假”。

5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”。

原命題等價於逆否命題,但原命題與逆命題、否命題都不等價。反證法分為三步:假設、推矛、得果。

6、充要條件

二、函數

1、指數式、對數式,

2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合中的元素必有像,但第二個集合中的元素不一定有原像(中元素的像有且僅有下一個,但中元素的原像可能沒有,也可任意個);函數是“非空數集上的映射”,其中“值域是映射中像集的子集”。

(2)函數圖像與軸垂線至多一個公共點,但與軸垂線的公共點可能沒有,也可任意個。

(3)函數圖像一定是座標系中的曲線,但座標系中的曲線不一定能成為函數圖像。

3、單調性和奇偶性

(1)奇函數在關於原點對稱的區間上若有單調性,則其單調性完全相同。

偶函數在關於原點對稱的區間上若有單調性,則其單調性恰恰相反。

(2)複合函數的單調性特點是:“同性得增,增必同性;異性得減,減必異性”。

複合函數的奇偶性特點是:“內偶則偶,內奇同外”。複合函數要考慮定義域的變化。(即複合有意義)

4、對稱性與週期性(以下結論要消化吸收,不可強記)

(1)函數與函數的圖像關於直線(軸)對稱。

推廣一:如果函數對於一切,都有成立,那麼的圖像關於直線(由“和的一半確定”)對稱。

推廣二:函數,的圖像關於直線對稱。

(2)函數與函數的圖像關於直線(軸)對稱。

(3)函數與函數的圖像關於座標原點中心對稱。

三、數列

1、數列的通項、數列項的項數,遞推公式與遞推數列,數列的通項與數列的前項和公式的關係

2、等差數列中

(1)等差數列公差的取值與等差數列的單調性。

(2)也成等差數列。

(3)兩等差數列對應項和(差)組成的新數列仍成等差數列。

(4)仍成等差數列。

(5)“首正”的遞等差數列中,前項和的最大值是所有非負項之和;“首負”的遞增等差數列中,前項和的最小值是所有非正項之和;

(6)有限等差數列中,奇數項和與偶數項和的存在必然聯繫,由數列的總項數是偶數還是奇數決定。若總項數為偶數,則“偶數項和“奇數項和=總項數的一半與其公差的積;若總項數為奇數,則“奇數項和—偶數項和”=此數列的中項。

(7)兩數的等差中項惟一存在。在遇到三數或四數成等差數列時,常考慮選用“中項關係”轉化求解。

(8)判定數列是否是等差數列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是説數列是等差數列的充要條件主要有這五種形式)。

3、等比數列中:

(1)等比數列的符號特徵(全正或全負或一正一負),等比數列的首項、公比與等比數列的單調性。

(2)兩等比數列對應項積(商)組成的新數列仍成等比數列。

(3)“首大於1”的正值遞減等比數列中,前項積的最大值是所有大於或等於1的項的積;“首小於1”的正值遞增等比數列中,前項積的最小值是所有小於或等於1的項的積;

(4)有限等比數列中,奇數項和與偶數項和的存在必然聯繫,由數列的總項數是偶數還是奇數決定。若總項數為偶數,則“偶數項和”=“奇數項和”與“公比”的積;若總項數為奇數,則“奇數項和“首項”加上“公比”與“偶數項和”積的和。

(5)並非任何兩數總有等比中項。僅當實數同號時,實數存在等比中項。對同號兩實數的等比中項不僅存在,而且有一對。也就是説,兩實數要麼沒有等比中項(非同號時),如果有,必有一對(同號時)。在遇到三數或四數成等差數列時,常優先考慮選用“中項關係”轉化求解。

(6)判定數列是否是等比數列的方法主要有:定義法、中項法、通項法、和式法(也就是説數列是等比數列的充要條件主要有這四種形式)。

4、等差數列與等比數列的聯繫

(1)如果數列成等差數列,那麼數列(總有意義)必成等比數列。

(2)如果數列成等比數列,那麼數列必成等差數列。

(3)如果數列既成等差數列又成等比數列,那麼數列是非零常數數列;但數列是常數數列僅是數列既成等差數列又成等比數列的必要非充分條件。

(4)如果兩等差數列有公共項,那麼由他們的公共項順次組成的新數列也是等差數列,且新等差數列的公差是原兩等差數列公差的最小公倍數。

如果一個等差數列與一個等比數列有公共項順次組成新數列,那麼常選用“由特殊到一般的方法”進行研討,且以其等比數列的項為主,探求等比數列中那些項是他們的公共項,並構成新的數列。

5、數列求和的常用方法:

(1)公式法:①等差數列求和公式(三種形式),

②等比數列求和公式(三種形式),

(2)分組求和法:在直接運用公式法求和有困難時,常將“和式”中“同類項”先合併在一起,再運用公式法求和。

(3)倒序相加法:在數列求和中,若和式中到首尾距離相等的兩項和有其共性或數列的通項與組合數相關聯,則常可考慮選用倒序相加法,發揮其共性的作用求和(這也是等差數列前和公式的推導方法)。

(4)錯位相減法:如果數列的通項是由一個等差數列的通項與一個等比數列的通項相乘構成,那麼常選用錯位相減法,將其和轉化為“一個新的的等比數列的和”求解(注意:一般錯位相減後,其中“新等比數列的項數是原數列的項數減一的差”!)(這也是等比數列前和公式的推導方法之一)。

(5)裂項相消法:如果數列的通項可“分裂成兩項差”的形式,且相鄰項分裂後相關聯,那麼常選用裂項相消法求和

(6)通項轉換法。

四、三角函數

1、終邊與終邊相同(的終邊在終邊所在射線上)。

終邊與終邊共線(的終邊在終邊所在直線上)。

終邊與終邊關於軸對稱

終邊與終邊關於軸對稱

終邊與終邊關於原點對稱

一般地:終邊與終邊關於角的終邊對稱。

與的終邊關係由“兩等分各象限、一二三四”確定。

2、弧長公式:,扇形面積公式:1弧度(1rad)。

3、三角函數符號特徵是:一是全正、二正弦正、三是切正、四餘弦正。

4、三角函數線的特徵是:正弦線“站在軸上(起點在軸上)”、餘弦線“躺在軸上(起點是原點)”、正切線“站在點處(起點是)”。務必重視“三角函數值的大小與單位圓上相應點的座標之間的關係,‘正弦’‘縱座標’、‘餘弦’‘橫座標’、‘正切’‘縱座標除以橫座標之商’”;務必記住:單位圓中角終邊的變化與值的大小變化的關係為鋭角

5、三角函數同角關係中,平方關係的運用中,務必重視“根據已知角的範圍和三角函數的取值,精確確定角的範圍,並進行定號”;

6、三角函數誘導公式的本質是:奇變偶不變,符號看象限。

7、三角函數變換主要是:角、函數名、次數、係數(常值)的變換,其核心是“角的變換”!

角的變換主要有:已知角與特殊角的變換、已知角與目標角的變換、角與其倍角的變換、兩角與其和差角的變換。

8、三角函數性質、圖像及其變換:

(1)三角函數的定義域、值域、單調性、奇偶性、有界性和週期性

注意:正切函數、餘切函數的定義域;絕對值對三角函數週期性的影響:一般説來,某一週期函數解析式加絕對值或平方,其週期性是:弦減半、切不變。既為周期函數又是偶函數的函數自變量加絕對值,其週期性不變;其他不定。如的週期都是,但的週期為,y=|tanx|的週期不變,問函數y=cos|x|,,y=cos|x|是周期函數嗎?

(2)三角函數圖像及其幾何性質:

(3)三角函數圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。

(4)三角函數圖像的作法:三角函數線法、五點法(五點橫座標成等差數列)和變換法。

9、三角形中的三角函數:

(1)內角和定理:三角形三角和為,任意兩角和與第三個角總互補,任意兩半角和與第三個角的半角總互餘。鋭角三角形三內角都是鋭角三內角的餘弦值為正值任兩角和都是鈍角任意兩邊的平方和大於第三邊的平方。

(2)正弦定理:(R為三角形外接圓的半徑)。

(3)餘弦定理:常選用餘弦定理鑑定三角形的類型。

五、向量

1、向量運算的幾何形式和座標形式,請注意:向量運算中向量起點、終點及其座標的特徵。

2、幾個概念:零向量、單位向量(與共線的單位向量是,平行(共線)向量(無傳遞性,是因為有)、相等向量(有傳遞性)、相反向量、向量垂直、以及一個向量在另一向量方向上的投影(在上的投影是)。

3、兩非零向量平行(共線)的充要條件

4、平面向量的基本定理:如果e1和e2是同一平面內的兩個不共線向量,那麼對該平面內的任一向量a,有且只有一對實數,使a= e1+ e2。

5、三點共線;

6、向量的數量積:

六、不等式

1、(1)解不等式是求不等式的解集,最後務必有集合的形式表示;不等式解集的端點值往往是不等式對應方程的根或不等式有意義範圍的端點值。

(2)解分式不等式的一般解題思路是什麼?(移項通分,分子分母分解因式,x的係數變為正值,標根及奇穿過偶彈回);

(3)含有兩個絕對值的不等式如何去絕對值?(一般是根據定義分類討論、平方轉化或換元轉化);

(4)解含參不等式常分類等價轉化,必要時需分類討論。注意:按參數討論,最後按參數取值分別説明其解集,但若按未知數討論,最後應求並集。

2、利用重要不等式以及變式等求函數的最值時,務必注意a,b(或a,b非負),且“等號成立”時的條件是積ab或和a+b其中之一應是定值(一正二定三等四同時)。

3、常用不等式有:(根據目標不等式左右的運算結構選用)

a、b、c R,(當且僅當時,取等號)

4、比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數性質法、綜合法、分析法

5、含絕對值不等式的性質:

6、不等式的恆成立,能成立,恰成立等問題

(1)恆成立問題

若不等式在區間上恆成立,則等價於在區間上

若不等式在區間上恆成立,則等價於在區間上

(2)能成立問題

(3)恰成立問題

若不等式在區間上恰成立,則等價於不等式的解集為。

若不等式在區間上恰成立,則等價於不等式的解集為,

七、直線和圓

1、直線傾斜角與斜率的存在性及其取值範圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量))。應用直線方程的點斜式、斜截式設直線方程時,一般可設直線的斜率為k,但你是否注意到直線垂直於x軸時,即斜率k不存在的情況?

2、知直線縱截距,常設其方程為或;知直線橫截距,常設其方程為(直線斜率k存在時,為k的倒數)或知直線過點,常設其方程為。

(2)直線在座標軸上的截距可正、可負、也可為0。直線兩截距相等直線的斜率為—1或直線過原點;直線兩截距互為相反數直線的斜率為1或直線過原點;直線兩截距絕對值相等直線的斜率為或直線過原點。

(3)在解析幾何中,研究兩條直線的位置關係時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合。

3、相交兩直線的夾角和兩直線間的到角是兩個不同的概念:夾角特指相交兩直線所成的較小角,範圍是。而其到角是帶有方向的角,範圍是

4、線性規劃中幾個概念:約束條件、可行解、可行域、目標函數、最優解。

5、圓的方程:最簡方程;標準方程;

6、解決直線與圓的關係問題有“函數方程思想”和“數形結合思想”兩種思路,等價轉化求解,重要的是發揮“圓的平面幾何性質(如半徑、半弦長、弦心距構成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!”

(1)過圓上一點圓的切線方程

過圓上一點圓的切線方程

過圓上一點圓的切線方程

如果點在圓外,那麼上述直線方程表示過點兩切線上兩切點的“切點弦”方程。

如果點在圓內,那麼上述直線方程表示與圓相離且垂直於(為圓心)的直線方程,(為圓心到直線的距離)。

7、曲線與的交點座標方程組的解;

過兩圓交點的圓(公共弦)係為,當且僅當無平方項時,為兩圓公共弦所在直線方程。

八、圓錐曲線

1、圓錐曲線的兩個定義,及其“括號”內的限制條件,在圓錐曲線問題中,如果涉及到其兩焦點(兩相異定點),那麼將優先選用圓錐曲線第一定義;如果涉及到其焦點、準線(一定點和不過該點的一定直線)或離心率,那麼將優先選用圓錐曲線第二定義;涉及到焦點三角形的問題,也要重視焦半徑和三角形中正餘弦定理等幾何性質的應用。

(1)注意:①圓錐曲線第一定義與配方法的綜合運用;

②圓錐曲線第二定義是:“點點距為分子、點線距為分母”,橢圓點點距除以點線距商是小於1的正數,雙曲線點點距除以點線距商是大於1的正數,拋物線點點距除以點線距商是等於1。

2、圓錐曲線的幾何性質:圓錐曲線的對稱性、圓錐曲線的範圍、圓錐曲線的特殊點線、圓錐曲線的變化趨勢。其中,橢圓中、雙曲線中。

重視“特徵直角三角形、焦半徑的最值、焦點弦的最值及其‘頂點、焦點、準線等相互之間與座標系無關的幾何性質’”,尤其是雙曲線中焦半徑最值、焦點弦最值的特點。

3、在直線與圓錐曲線的位置關係問題中,有“函數方程思想”和“數形結合思想”兩種思路,等價轉化求解。特別是:

①直線與圓錐曲線相交的必要條件是他們構成的方程組有實數解,當出現一元二次方程時,務必“判別式≥0”,尤其是在應用韋達定理解決問題時,必須先有“判別式≥0”。

②直線與拋物線(相交不一定交於兩點)、雙曲線位置關係(相交的四種情況)的特殊性,應謹慎處理。

③在直線與圓錐曲線的位置關係問題中,常與“弦”相關,“平行弦”問題的關鍵是“斜率”、“中點弦”問題關鍵是“韋達定理”或“小小直角三角形”或“點差法”、“長度(弦長)”問題關鍵是長度(弦長)公式

④如果在一條直線上出現“三個或三個以上的點”,那麼可選擇應用“斜率”為橋樑轉化。

4、要重視常見的尋求曲線方程的方法(待定係數法、定義法、直譯法、代點法、參數法、交軌法、向量法等),以及如何利用曲線的方程討論曲線的幾何性質(定義法、幾何法、代數法、方程函數思想、數形結合思想、分類討論思想和等價轉化思想等),這是解析幾何的兩類基本問題,也是解析幾何的基本出發點。

注意:①如果問題中涉及到平面向量知識,那麼應從已知向量的特點出發,考慮選擇向量的幾何形式進行“摘帽子或脱靴子”轉化,還是選擇向量的代數形式進行“摘帽子或脱靴子”轉化。

②曲線與曲線方程、軌跡與軌跡方程是兩個不同的概念,尋求軌跡或軌跡方程時應注意軌跡上特殊點對軌跡的“完備性與純粹性”的影響。

③在與圓錐曲線相關的綜合題中,常藉助於“平面幾何性質”數形結合(如角平分線的雙重身份)、“方程與函數性質”化解析幾何問題為代數問題、“分類討論思想”化整為零分化處理、“求值構造等式、求變量範圍構造不等關係”等等。

九、直線、平面、簡單多面體

1、計算異面直線所成角的關鍵是平移(補形)轉化為兩直線的夾角計算

2、計算直線與平面所成的角關鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的餘角),三餘弦公式(最小角定理),或先運用等積法求點到直線的距離,後虛擬直角三角形求解。注:一斜線與平面上以斜足為頂點的角的兩邊所成角相等斜線在平面上射影為角的平分線。

3、空間平行垂直關係的證明,主要依據相關定義、公理、定理和空間向量進行,請重視線面平行關係、線面垂直關係(三垂線定理及其逆定理)的橋樑作用。注意:書寫證明過程需規範。

4、直稜柱、正稜柱、平行六面體、長方體、正方體、正四面體、稜錐、正稜錐關於側稜、側面、對角面、平行於底的截面的幾何體性質。

如長方體中:對角線長,稜長總和為,全(表)面積為,(結合可得關於他們的等量關係,結合基本不等式還可建立關於他們的不等關係式),

如三稜錐中:側稜長相等(側稜與底面所成角相等)頂點在底上射影為底面外心,側稜兩兩垂直(兩對對稜垂直)頂點在底上射影為底面垂心,斜高長相等(側面與底面所成相等)且頂點在底上在底面內頂點在底上射影為底面內心。

5、求幾何體體積的常規方法是:公式法、割補法、等積(轉換)法、比例(性質轉換)法等。注意:補形:三稜錐三稜柱平行六面體

6、多面體是由若干個多邊形圍成的幾何體。稜柱和稜錐是特殊的多面體。

正多面體的每個面都是相同邊數的正多邊形,以每個頂點為其一端都有相同數目的稜,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體。

7、球體積公式。球表面積公式,是兩個關於球的幾何度量公式。它們都是球半徑及的函數。

十、導數

1、導數的意義:曲線在該點處的切線的斜率(幾何意義)、瞬時速度、邊際成本(成本為因變量、產量為自變量的函數的導數,C為常數)

2、多項式函數的導數與函數的單調性

在一個區間上(個別點取等號)在此區間上為增函數。

在一個區間上(個別點取等號)在此區間上為減函數。

3、導數與極值、導數與最值:

(1)函數處有且“左正右負”在處取極大值;

函數在處有且左負右正”在處取極小值。

注意:①在處有是函數在處取極值的必要非充分條件。

②求函數極值的方法:先找定義域,再求導,找出定義域的分界點,列表求出極值。特別是給出函數極大(小)值的條件,一定要既考慮,又要考慮驗“左正右負”(“左負右正”)的轉化,否則條件沒有用完,這一點一定要切記。

③單調性與最值(極值)的研究要注意列表!

(2)函數在一閉區間上的最大值是此函數在此區間上的極大值與其端點值中的“最大值”

函數在一閉區間上的最小值是此函數在此區間上的極小值與其端點值中的“最小值”;

注意:利用導數求最值的步驟:先找定義域再求出導數為0及導數不存在的的點,然後比較定義域的端點值和導數為0的點對應函數值的大小,其中最大的就是最大值,最小就為最小。