糯米文學吧

位置:首頁 > 英語 > 英語四級

2016下半年英語四級長篇閲讀匹配練習

四級考試中的閲讀部分包括三種題型:選詞填空、信息匹配和仔細閲讀,分值比重分別為5%,10%,20%。信息匹配較為簡單,同學們的得分率相對較高。以下是yjbys網小編整理的關於英語四級長篇閲讀匹配練習,供大家備考。

2016下半年英語四級長篇閲讀匹配練習

Here’s the Totally Amazing Wonder Material That Could Revolutionize Technology

the technology industry,every new product or service seems to come with the promise that it is an innovation with the potential to change the hene(石墨烯),a form of carbon,might actually do just that.

B.“Graphene is a wonderful material,”Jeanie Lau,a professor of physics at the University of California at Riverside,told Fortune.“It conducts heat 10 times better than copper and electricity 100 times better than silicon,is transparent like plastic,extremely lightweight,extremely strong,yet flexible and the past decade,it has taken the scientific and technology communities by storm,and has become the most promising electronic material to supplement or replace silicon.”

hene has already found its way into a number of compelling applications,Lau instance,“since it is both transparent and electrically conductive—two attributes rarely found in the same material in nature—it has tremendous potential as the transparent electrode in lays;solar cells,and touch screens,”she explained.“Companies such as Samsung that invest heavily in this area have already secured patents,produced prototypes,and are expected to bring products to market in a few years.”Wearable electronic devices,aviation components,broadband photodetectors(光電檢測器),radiation-resistant coatings,sensors,and energy storage are among numerous other areas of active said.

many researchers and investors,the ultimate application is graphene-based transistors,the building blocks of modem getting there may take some time.

A child of graphite

t produced in a lab back in 2004,graphene is essentially a single layer of pure carbon atoms bonded together in a honeycomb lattice so thin it’s actually considered two-dimensional.“We generally regard anything less than 10 layers of graphene as graphene;otherwise,it’s graphite,”said Aravind Vijayaraghavan,a lecturer in nanomaterials at the University of Manchester.

“graphene”is a bit of an umbrella term.“To oversimplify,there are two major types of graphene,”Michael Patterson,CEO of Graphene Frontiers, first:“Nanoplatelets,”which are powders or flakes made from e have been around for a while and are“not really super-sexy,”Patterson said.“You mix them into polymers(聚合物)or inks or rubbers to make them conductive.”In flake form,graphene is already on its way to becoming a commodity,Patterson other type—in sheet or film form—is where graphene’s biggest promise hene sheets have“incredible potential for electronics,”Patterson the near term,that potential may manifest in situations where the quantity requirements are“not that great”and where quality or conductivity doesn’t have to be as high,such as in basic touch-screen applications,he ucts that use graphene in this way could arrive to market in the next six to 1 2 months.

ing a little further out,graphene can be employed in membranes used for water heed-Martin already has a patented product known as Perforene.“It’s real and it works,but it won’t be economically viable until the product reaches an industrial scale where the cost is measured in pennies per square inch”rather than dollars or tens of dollars per square inch,Patterson explained.

“That’s where we’re working today.”

‘It’s expensive and low-capacity’

H. But use of graphene in semiconductors—the technology’s Holy Grail—is likely a decade away.“Many of the challenges presented by graphene are common to most new materials,”Paul Smith,a patent associate with the Intellectual Property Law Group at Fenwick & West,told Fortune.“The trick is figuring out how to synthesize graphene in a way that first is manufacturable beyond lab scale;second,preserves the desirable properties of the material;and third,can be integrated into a product or technology.”

hesizing graphene in sheet form is considerably more expensive and time-consuming than producing graphene eas the latter typically involves a“quick and dirty”process by which bulk graphite is disassembled into millions of tiny pieces,Lau explained,large sheets of graphene are carefully“grown”on substrates(基板)such as copper,germanium,or silicon carbide.

J. Graphene sheets are also prone to defects and“very difficult to make in good quality,”Ron Mertens,owner and editor of ,uction capacity is also very limited.“There are thousands of small companies that can make graphene,but it’s expensive and low-capacity,”Mertens und wafer measuring one inch in diameter,for instance,costs about$1 00,he added.

even thornier obstacle on the way to graphene transistors is the fact that the material has no“band gap,”an essential property that allows transistors to be turned on and off without leaking electronic charge in the“off”state,said Elias Towe,a professor of electrical and computer engineering at Carnegie Mellon University.

L.“Band-gap engineering has been and remains the biggest challenge in the development of graphene transistors and computer chips.”Lau requires controlling the material almost down at the atomic level,and“that’s really pushing the edges of existing technology,”Patterson said.“In 10 years,we’11 start to see these problems solved.”

‘It is largely a matter of time’

graphene is to succeed as a replacement for silicon,every unit of cost and performance will make a difference,Towe said.

N.“Silicon is hard to displace,with all the billions dollars of investments made in manufacturing infrastructure,”he said.“A replacement for silicon has to offer extraordinary performance at extremely rock-bottom cost to compel industry to change its way.”

gh graphene is just 10 years old—in contrast,use of silicon in transistors dates to the early 1950s—considerable progress has already been example,the largest graphene sheet was produced by hand in a laboratory eight years ago;its width was less than that of a human hair.“Nowadays,roll-to-roll printing of graphene sheets up to 1 00 meters long has been achieved,”Lau said.“With the increasing interest,investment,and research in graphene-based technology,I think it is largely a matter of time before the economy of scale kicks in and truly low-cost,large-scale production ofhigh-quality graphene is accomplished,”she added.

platelet is the powder-or flake-type of graphene that has been used for some time to make conductors and that is being launched on the market.

encourage industry to replace silicon with graphene,it is necessary for graphene to provide high property at an extremely low expense.

e graphene flakes are roughly processed with bulk graphite,graphene sheets are carefully made on substrates like copper,germanium,or silicon carbide.

the past ten hene has become a hot topic among the scientific and technology groups.

orene won’t come into the market before it can be manufactured at a very low cost.

ite of a much younger age than silicon,great progress has been made in graphene;and with ever increasing interest,investment and research in graphene technology,it’s probable to manufacture cost- effective graphene of high quality.

hene has been attempted to be used for plenty of noticeable applications.

it still needs to take ten years for graphene to be used in semiconductors,which lies at the heart of the technology.

today’s technology,it is still impossible to control material down at the atomic level.

s Towe pointed out that having no“band gap”,the dispensable feature of transistors,makes it more difficult to produce graphene transistors.

platelet is the powder-or flake-type of graphene that has been used for some time to make conductors and that is being launched on the market.納米片是粉末狀或者薄片狀的石墨烯,被用於製作導體已經有一段時間了,而且開始被推向市場。

encourage industry to replace silicon with is necessary for graphene to provide high property at an extremely low expense.為了讓業界用石墨烯代替硅,就必須讓石墨烯在造價極低的同時保持高性能。

e graphene flakes are roughly processed with bulk graphite,graphene sheets are carefully made on substrates like copper,germanium,or silicon carbide.石墨烯薄片是由塊狀石墨粗略加工而成的`,而石墨烯薄膜則是在銅,鍺或者碳化硅等基板上仔細加工而成的。

the past ten years,graphene has become a hot topic among the scientific and technology groups.在過去的十年間,石墨烯已經成了科學技術界的熱點話題。

orene won’t come into the market before it Can be manufactured at a very low orene在能夠以低成本大量生產之前是不會上市的。

ite of a much younger age than silicon,great progress has been made in graphene;and with ever increasing interest,investment and research in graphene technology,it’s probable to manufacture cost-effective graphene ofhigh .雖然出現得比硅要晚很多年,石墨烯仍取得了很大進展;而且隨着石墨烯技術利益,投資及研究的日益增加,很有可能以低成本生產大量高質量的石墨烯。

hene has been attempted to be used for plenty of noticeable applications.石墨烯已經被嘗試着用於許多引人注意的應用程序。

it still needs to take ten years for graphene to be used in semiconductors,which lies at the heart of the technology.但是,將石墨烯用於半導體制造(技術的核心)仍需要十年的時間。

today’s technology,it is still impossible to control material down at the atomic level.以今天的技術還無法將材料控制在原子層面。

s Towe pointed out that having no“band gap”,the dispensable feature of transistors,makes it more difficult to produce graphene transistors.艾利亞斯•陶威指出,由於缺少晶體管必備的“帶隙”,使得製造石墨烯晶體管更加困難。