糯米文學吧

位置:首頁 > 範文 > 校園

大學聯考數學易失分知識點

校園1.92W
大學聯考數學易失分知識點1

遺忘空集致誤由於空集是任何非空集合的真子集,因此B=?時也滿足B?A。解含有參數的集合問題時,要特別注意當參數在某個範圍內取值時所給的集合可能是空集這種情況。

大學聯考數學易失分知識點

忽視集合元素的三性致誤集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含着對字母參數的一些要求。

混淆命題的否定與否命題命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。

充分條件、必要條件顛倒致誤對於兩個條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據充分條件和必要條件的概念作出準確的判斷。

“或”“且”“非”理解不準致誤命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假)。求參數取值範圍的題目,也可以把“或”“且”“非”與集合的“並”“交”“補”對應起來進行理解,通過集合的運算求解。

函數的單調區間理解不準致誤在研究函數問題時要時時刻刻想到“函數的圖像”,學會從函數圖像上去分析問題、尋找解決問題的方法。對於函數的幾個不同的單調遞增(減)區間,切忌使用並集,只要指明這幾個區間是該函數的單調遞增(減)區間即可。

判斷函數奇偶性忽略定義域致誤判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域關於原點對稱,如果不具備這個條件,函數一定是非奇非偶函數。

函數零點定理使用不當致誤如果函數y=f(x)在區間[a,b]上的圖像是一條連續的曲線,並且有f(a)f(b)0,那麼,函數y=f(x)在區間(a,b)內有零點,但f(a)f(b)0時,不能否定函數y=f(x)在(a,b)內有零點。函數的零點有“變號零點”和“不變號零點”,對於“不變號零點”函數的零點定理是“無能為力”的,在解決函數的零點問題時要注意這個問題。

三角函數的單調性判斷致誤對於函數y=Asin(ωx+φ)的單調性,當ω0時,由於內層函數u=ωx+φ是單調遞增的,所以該函數的單調性和y=sin x的單調性相同,故可完全按照函數y=sin x的單調區間解決;但當ω0時,內層函數u=ωx+φ是單調遞減的,此時該函數的單調性和函數y=sinx的單調性相反,就不能再按照函數y=sinx的單調性解決,一般是根據三角函數的奇偶性將內層函數的係數變為正數後再加以解決。對於帶有絕對值的三角函數應該根據圖像,從直觀上進行判斷。

忽視零向量致誤零向量是向量中最特殊的向量,規定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視。

向量夾角範圍不清致誤解題時要全面考慮問題。數學試題中往往隱含着一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。

an與Sn關係不清致誤在數列問題中,數列的通項an與其前n項和Sn之間存在下列關係:an=S1,n=1,Sn-Sn-1,n≥2。這個關係對任意數列都是成立的,但要注意的是這個關係式是分段的,在n=1和n≥2時這個關係式具有完全不同的表現形式,這也是解題中經常出錯的一個地方,在使用這個關係式時要牢牢記住其“分段”的特點。

對數列的定義、性質理解錯誤等差數列的前n項和在公差不為零時是關於n的常數項為零的二次函數;一般地,有結論“若數列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數列{an}為等差數列的充要條件是c=0”;在等差數列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數列。

  數列中的最

值錯誤數列問題中其通項公式、前n項和公式都是關於正整數n的函數,要善於從函數的觀點認識和理解數列問題。數列的通項an與前n項和Sn的關係是大學聯考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統一。在關於正整數n的二次函數中其取最值的點要根據正整數距離二次函數的對稱軸的遠近而定。

錯位相減求和項處理不當致誤錯位相減求和法的適用條件:數列是由一個等差數列和一個等比數列對應項的乘積所組成的,求其前n項和。基本方法是設這個和式為Sn,在這個和式兩端同時乘以等比數列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉化為以求一個等比數列的前n項和或前n-1項和為主的求和問題.這裏最容易出現問題的就是錯位相減後對剩餘項的處理。

不等式性質應用不當致誤在使用不等式的基本性質進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質成立的前提條件就會出現錯誤。

忽視基本不等式應用條件致誤利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數的最值時,務必注意a,b為正數(或a,b非負),ab或a+b其中之一應是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b0)的函數,在應用基本不等式求函數最值時,一定要注意ax,bx的符號,必要時要進行分類討論,另外要注意自變量x的取值範圍,在此範圍內等號能否取到。

不等式恆成立問題致誤解決不等式恆成立問題的常規求法是:藉助相應函數的單調性求解,其中的主要方法有數形結合法、變量分離法、主元法。通過最值產生結論。應注意恆成立與存在性問題的區別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恆成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應特別注意兩函數中的最大值與最小值的關係。

忽視三視圖中的實、虛線致誤三視圖是根據正投影原理進行繪製,嚴格按照“長對正,高平齊,寬相等”的規則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽。

面積體積計算轉化不靈活致誤面積、體積的計算既需要學生有紮實的基礎知識,又要用到一些重要的思想方法,是大學聯考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法。(1)還台為錐的思想:這是處理台體時常用的思想方法。(2)割補法:求不規則圖形面積或幾何體體積時常用。(3)等積變換法:充分利用三稜錐的任意一個面都可作為底面的特點,靈活求解三稜錐的體積。(4)截面法:尤其是關於旋轉體及與旋轉體有關的組合問題,常畫出軸截面進行分析求解。

隨意推廣平面幾何中結論致誤平面幾何中有些概念和性質,推廣到空間中不一定成立.例如“過直線外一點只能作一條直線與已知直線垂直”“垂直於同一條直線的兩條直線平行”等性質在空間中就不成立。

對摺疊與展開問題認識不清致誤摺疊與展開是立體幾何中的常用思想方法,此類問題注意摺疊或展開過程中平面圖形與空間圖形中的變量與不變量,不僅要注意哪些變了,哪些沒變,還要注意位置關係的變化。

點、線、面位置關係不清致誤關於空間點、線、面位置關係的組合判斷類試題是大學聯考全面考查考生對空間位置關係的判定和性質掌握程度的理想題型,歷來受到命題者的青睞,解決這類問題的基本思路有兩個:一是逐個尋找反例作出否定的判斷或逐個進行邏輯證明作出肯定的判斷;二是結合長方體模型或實際空間位置(如課桌、教室)作出判斷,但要注意定理應用準確、考慮問題全面細緻。

忽視斜率不存在致誤在解決兩直線平行的相關問題時,若利用l1∥l2?k1=k2來求解,則要注意其前提條件是兩直線不重合且斜率存在。如果忽略k1,k2不存在的情況,就會導致錯解。這類問題也可以利用如下的結論求解,即直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0平行的必要條件是A1B2-A2B1=0,在求出具體數值後代入檢驗,看看兩條直線是不是重合從而確定問題的答案。對於解決兩直線垂直的相關問題時也有類似的情況。利用l1⊥l2?k1·k2=-1時,要注意其前提條件是k1與k2必須同時存在。利用直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0垂直的充要條

  件是A1A2+B1B2=0,就可以避免討論。

忽視零截距致誤解決有關直線的截距問題時應注意兩點:一是求解時一定不要忽略截距為零這種特殊情況;二是要明確截距為零的直線不能寫成截距式。因此解決這類問題時要進行分類討論,不要漏掉截距為零時的情況。

忽視圓錐曲線定義中條件致誤利用橢圓、雙曲線的定義解題時,要注意兩種曲線的定義形式及其限制條件。如在雙曲線的定義中,有兩點是缺一不可的:其一,絕對值;其二,2a|F1F2|。如果不滿足第一個條件,動點到兩定點的距離之差為常數,而不是差的絕對值為常數,那麼其軌跡只能是雙曲線的一支。

誤判直線與圓錐曲線位置關係過定點的直線與雙曲線的位置關係問題,基本的解決思路有兩個:一是利用一元二次方程的判別式來確定,但一定要注意,利用判別式的前提是二次項係數不為零,當二次項係數為零時,直線與雙曲線的漸近線平行(或重合),也就是直線與雙曲線最多隻有一個交點;二是利用數形結合的思想,畫出圖形,根據圖形判斷直線和雙曲線各種位置關係。在直線與圓錐曲線的位置關係中,拋物線和雙曲線都有特殊情況,在解題時要注意,不要忘記其特殊性。

兩個計數原理不清致誤分步加法計數原理與分類乘法計數原理是解決排列組合問題最基本的原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提,在解題時,要分析計數對象的本質特徵與形成過程,按照事件的結果來分類,按照事件的發生過程來分步,然後應用兩個基本原理解決.對於較複雜的問題既要用到分類加法計數原理,又要用到分步乘法計數原理,一般是先分類,每一類中再分步,注意分類、分步時要不重複、不遺漏,對於“至少、至多”型問題除了可以用分類方法處理外,還可以用間接法處理。

排列、組合不分致誤為了簡化問題和表達方便,解題時應將具有實際意義的排列組合問題符號化、數學化,建立適當的模型,再應用相關知識解決.建立模型的關鍵是判斷所求問題是排列問題還是組合問題,其依據主要是看元素的組成有沒有順序性,有順序性的是排列問題,無順序性的是組合問題。

混淆項係數與二項式係數致誤在二項式(a+b)n的展開式中,其通項Tr+1=Crnan-rbr是指展開式的第r+1項,因此展開式中第1,2,3,...,n項的二項式係數分別是C0n,C1n,C2n,...,Cn-1n,而不是C1n,C2n,C3n,...,Cnn。而項的係數是二項式係數與其他數字因數的積。

循環結束判斷不準致誤控制循環結構的是計數變量和累加變量的變化規律以及循環結束的條件。在解答這類題目時首先要弄清楚這兩個變量的變化規律,其次要看清楚循環結束的條件,這個條件由輸出要求所決定,看清楚是滿足條件時結束還是不滿足條件時結束。

條件結構對條件判斷不準致誤條件結構的程序框圖中對判斷條件的分類是逐級進行的,其中沒有遺漏也沒有重複,在解題時對判斷條件要仔細辨別,看清楚條件和函數的對應關係,對條件中的數值不要漏掉也不要重複了端點值。

  複數的概念不清致誤

對於複數a+bi(a,b∈R),a叫做實部,b叫做虛部;當且僅當b=0時,複數a+bi(a,b∈R)是實數a;當b≠0時,複數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數。解決複數概念類試題要仔細區分以上概念差別,防止出錯。另外,i2=-1是實現實數與虛數互化的橋樑,要適時進行轉化,解題時極易丟掉“-”而出錯。

大學聯考數學易失分知識點2

忽視集合元素的三性致誤

集合中的元素具有確定性、無序性、互異性,集合元素的.三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含着對字母參數的一些要求。

混淆命題的否定與否命題

命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。

充分條件、必要條件顛倒致誤

對於兩個條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據充分條件和必要條件的概念作出準確的判斷。

函數的單調區間理解不準致誤

在研究函數問題時要時時刻刻想到“函數的圖像”,學會從函數圖像上去分析問題、尋找解決問題的方法。對於函數的幾個不同的單調遞增(減)區間,切忌使用並集,只要指明這幾個區間是該函數的單調遞增(減)區間即可。

判斷函數奇偶性忽略定義域致誤

判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域關於原點對稱,如果不具備這個條件,函數一定是非奇非偶函數。

三角函數的單調性判斷致誤

對於函數y=Asin(ωx+φ)的單調性,當ω>0時,由於內層函數u=ωx+φ是單調遞增的,所以該函數的單調性和y=sin x的單調性相同,故可完全按照函數y=sin x的單調區間解決;但當ω<0時,內層函數u=ωx+φ是單調遞減的,此時該函數的單調性和函數y=sinx的單調性相反,就不能再按照函數y=sinx的單調性解決,一般是根據三角函數的奇偶性將內層函數的係數變為正數後再加以解決。對於帶有絕對值的三角函數應該根據圖像,從直觀上進行判斷。

大學聯考數學易失分知識點3

1、遺忘空集致誤

由於空集是任何非空集合的真子集,因此B=?時也滿足B?A。解含有參數的集合問題時,要特別注意當參數在某個範圍內取值時所給的集合可能是空集這種情況。

2、忽視集合元素的三性致誤

集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含着對字母參數的一些要求。

3、混淆命題的否定與否命題

命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。

4、充分條件、必要條件顛倒致誤

對於兩個條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據充分條件和必要條件的概念作出準確的判斷。

5、“或”“且”“非”理解不準致誤

命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假)。求參數取值範圍的題目,也可以把“或”“且”“非”與集合的“並”“交”“補”對應起來進行理解,通過集合的運算求解。

6、函數的單調區間理解不準致誤

在研究函數問題時要時時刻刻想到“函數的圖像”,學會從函數圖像上去分析問題、尋找解決問題的方法。對於函數的幾個不同的單調遞增(減)區間,切忌使用並集,只要指明這幾個區間是該函數的單調遞增(減)區間即可。

7、判斷函數奇偶性忽略定義域致誤

判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域關於原點對稱,如果不具備這個條件,函數一定是非奇非偶函數。

8、函數零點定理使用不當致誤

如果函數y=f(x)在區間[a,b]上的圖像是一條連續的曲線,並且有f(a)f(b)<0,那麼,函數y=f(x)在區間(a,b)內有零點,但f(a)f(b)>0時,不能否定函數y=f(x)在(a,b)內有零點。函數的零點有“變號零點”和“不變號零點”,對於“不變號零點”函數的零點定理是“無能為力”的,在解決函數的零點問題時要注意這個問題。

9、三角函數的單調性判斷致誤

對於函數y=Asin(ωx+φ)的單調性,當ω>0時,由於內層函數u=ωx+φ是單調遞增的,所以該函數的單調性和y=sin x的單調性相同,故可完全按照函數y=sin x的單調區間解決;但當ω<0時,內層函數u=ωx+φ是單調遞減的,此時該函數的單調性和函數y=sinx的單調性相反,就不能再按照函數y=sinx的單調性解決,一般是根據三角函數的奇偶性將內層函數的係數變為正數後再加以解決。對於帶有絕對值的三角函數應該根據圖像,從直觀上進行判斷。

10、忽視零向量致誤

零向量是向量中最特殊的向量,規定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視。

11、向量夾角範圍不清致誤

解題時要全面考慮問題。數學試題中往往隱含着一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。

12、an與Sn關係不清致誤

在數列問題中,數列的通項an與其前n項和Sn之間存在下列關係:an=S1,n=1,Sn—Sn—1,n≥2。這個關係對任意數列都是成立的,但要注意的是這個關係式是分段的,在n=1和n≥2時這個關係式具有完全不同的表現形式,這也是解題中經常出錯的一個地方,在使用這個關係式時要牢牢記住其“分段”的特點。

13、對數列的定義、性質理解錯誤

等差數列的前n項和在公差不為零時是關於n的常數項為零的二次函數;一般地,有結論“若數列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數列{an}為等差數列的充要條件是c=0”;在等差數列中,Sm,S2m—Sm,S3m—S2m(m∈N)是等差數列。

14、數列中的最值錯誤

數列問題中其通項公式、前n項和公式都是關於正整數n的函數,要善於從函數的觀點認識和理解數列問題。數列的通項an與前n項和Sn的關係是大學聯考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統一。在關於正整數n的二次函數中其取最值的點要根據正整數距離二次函數的對稱軸的遠近而定。

15、錯位相減求和項處理不當致誤

錯位相減求和法的適用條件:數列是由一個等差數列和一個等比數列對應項的乘積所組成的,求其前n項和。基本方法是設這個和式為Sn,在這個和式兩端同時乘以等比數列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉化為以求一個等比數列的前n項和或前n—1項和為主的求和問題。這裏最容易出現問題的就是錯位相減後對剩餘項的處理。

16、不等式性質應用不當致誤

在使用不等式的基本性質進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質成立的前提條件就會出現錯誤。

17、忽視基本不等式應用條件致誤

利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數的最值時,務必注意a,b為正數(或a,b非負),ab或a+b其中之一應是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b>0)的函數,在應用基本不等式求函數最值時,一定要注意ax,bx的符號,必要時要進行分類討論,另外要注意自變量x的取值範圍,在此範圍內等號能否取到。

18、不等式恆成立問題致誤

解決不等式恆成立問題的常規求法是:藉助相應函數的單調性求解,其中的主要方法有數形結合法、變量分離法、主元法。通過最值產生結論。應注意恆成立與存在性問題的區別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)—g(x)≤0的恆成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應特別注意兩函數中的最大值與最小值的關係。

19、忽視三視圖中的實、虛線致誤

三視圖是根據正投影原理進行繪製,嚴格按照“長對正,高平齊,寬相等”的規則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽。

20、面積體積計算轉化不靈活致誤

面積、體積的計算既需要學生有紮實的基礎知識,又要用到一些重要的思想方法,是大學聯考考查的重要題型。因此要熟練掌握以下幾種常用的思想方法。(1)還台為錐的'思想:這是處理台體時常用的思想方法。(2)割補法:求不規則圖形面積或幾何體體積時常用。(3)等積變換法:充分利用三稜錐的任意一個面都可作為底面的特點,靈活求解三稜錐的體積。(4)截面法:尤其是關於旋轉體及與旋轉體有關的組合問題,常畫出軸截面進行分析求解。

21、隨意推廣平面幾何中結論致誤

平面幾何中有些概念和性質,推廣到空間中不一定成立。例如“過直線外一點只能作一條直線與已知直線垂直”“垂直於同一條直線的兩條直線平行”等性質在空間中就不成立。

22、對摺疊與展開問題認識不清致誤

摺疊與展開是立體幾何中的常用思想方法,此類問題注意摺疊或展開過程中平面圖形與空間圖形中的變量與不變量,不僅要注意哪些變了,哪些沒變,還要注意位置關係的變化。

23、點、線、面位置關係不清致誤

關於空間點、線、面位置關係的組合判斷類試題是大學聯考全面考查考生對空間位置關係的判定和性質掌握程度的理想題型,歷來受到命題者的青睞,解決這類問題的基本思路有兩個:一是逐個尋找反例作出否定的判斷或逐個進行邏輯證明作出肯定的判斷;二是結合長方體模型或實際空間位置(如課桌、教室)作出判斷,但要注意定理應用準確、考慮問題全面細緻。

24、忽視斜率不存在致誤

在解決兩直線平行的相關問題時,若利用l1∥l2?k1=k2來求解,則要注意其前提條件是兩直線不重合且斜率存在。如果忽略k1,k2不存在的情況,就會導致錯解。這類問題也可以利用如下的結論求解,即直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0平行的必要條件是A1B2—A2B1=0,在求出具體數值後代入檢驗,看看兩條直線是不是重合從而確定問題的答案。對於解決兩直線垂直的相關問題時也有類似的情況。利用l1⊥l2?k1·k2=—1時,要注意其前提條件是k1與k2必須同時存在。利用直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0垂直的充要條件是A1A2+B1B2=0,就可以避免討論。

25、忽視零截距致誤

解決有關直線的截距問題時應注意兩點:一是求解時一定不要忽略截距為零這種特殊情況;二是要明確截距為零的直線不能寫成截距式。因此解決這類問題時要進行分類討論,不要漏掉截距為零時的情況。

26、忽視圓錐曲線定義中條件致誤

利用橢圓、雙曲線的定義解題時,要注意兩種曲線的定義形式及其限制條件。如在雙曲線的定義中,有兩點是缺一不可的:其一,絕對值;其二,2a<|F1F2|。如果不滿足第一個條件,動點到兩定點的距離之差為常數,而不是差的絕對值為常數,那麼其軌跡只能是雙曲線的一支。

27、誤判直線與圓錐曲線位置關係

過定點的直線與雙曲線的位置關係問題,基本的解決思路有兩個:一是利用一元二次方程的判別式來確定,但一定要注意,利用判別式的前提是二次項係數不為零,當二次項係數為零時,直線與雙曲線的漸近線平行(或重合),也就是直線與雙曲線最多隻有一個交點;二是利用數形結合的思想,畫出圖形,根據圖形判斷直線和雙曲線各種位置關係。在直線與圓錐曲線的位置關係中,拋物線和雙曲線都有特殊情況,在解題時要注意,不要忘記其特殊性。

28、兩個計數原理不清致誤

分步加法計數原理與分類乘法計數原理是解決排列組合問題最基本的原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提,在解題時,要分析計數對象的本質特徵與形成過程,按照事件的結果來分類,按照事件的發生過程來分步,然後應用兩個基本原理解決。對於較複雜的問題既要用到分類加法計數原理,又要用到分步乘法計數原理,一般是先分類,每一類中再分步,注意分類、分步時要不重複、不遺漏,對於“至少、至多”型問題除了可以用分類方法處理外,還可以用間接法處理。

29、排列、組合不分致誤

為了簡化問題和表達方便,解題時應將具有實際意義的排列組合問題符號化、數學化,建立適當的模型,再應用相關知識解決。建立模型的關鍵是判斷所求問題是排列問題還是組合問題,其依據主要是看元素的組成有沒有順序性,有順序性的是排列問題,無順序性的是組合問題。

30、混淆項係數與二項式係數致誤

在二項式(a+b)n的展開式中,其通項Tr+1=Crnan—rbr是指展開式的第r+1項,因此展開式中第1,2,3,......n項的二項式係數分別是C0n,C1n,C2n,.......,Cn—1n,而不是C1n,C2n,C3n,.......,Cnn。而項的係數是二項式係數與其他數字因數的積。

31、循環結束判斷不準致誤

控制循環結構的是計數變量和累加變量的變化規律以及循環結束的條件。在解答這類題目時首先要弄清楚這兩個變量的變化規律,其次要看清楚循環結束的條件,這個條件由輸出要求所決定,看清楚是滿足條件時結束還是不滿足條件時結束。

32、條件結構對條件判斷不準致誤

條件結構的程序框圖中對判斷條件的分類是逐級進行的,其中沒有遺漏也沒有重複,在解題時對判斷條件要仔細辨別,看清楚條件和函數的對應關係,對條件中的數值不要漏掉也不要重複了端點值。

33、複數的概念不清致

對於複數a+bi(a,b∈R),a叫做實部,b叫做虛部;當且僅當b=0時,複數a+bi(a,b∈R)是實數a;當b≠0時,複數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數。解決複數概念類試題要仔細區分以上概念差別,防止出錯。另外,i2=—1是實現實數與虛數互化的橋樑,要適時進行轉化,解題時極易丟掉“—”而出錯。

大學聯考數學易失分知識點4

遺忘空集致誤

由於空集是任何非空集合的真子集,因此B=時也滿足BA.解含有參數的集合問題時,要特別注意當參數在某個範圍內取值時所給的集合可能是空集這種情況.

忽視集合元素的三性致誤

集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含着對字母參數的一些要求.

混淆命題的否定與否命題

命題的否定與命題的否命題是兩個不同的概念,命題p的否定是否定命題所作的判斷,而否命題是對若p,則q形式的命題而言,既要否定條件也要否定結論.

充分條件、必要條件顛倒致誤

對於兩個條件A,B,如果AB成立,則A是B的充分條件,B是A的必要條件;如果BA成立,則A是B的必要條件,B是A的充分條件;如果AB,則A,B互為充分必要條件.解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據充分條件和必要條件的概念作出準確的判斷.

或且非理解不準致誤

命題pq真p真或q真,命題pq假p假且q假(概括為一真即真);命題pq真p真且q真,命題pq假p假或q假(概括為一假即假);綈p真p假,綈p假p真(概括為一真一假).求參數取值範圍的題目,也可以把或且非與集合的並交補對應起來進行理解,通過集合的運算求解.

函數的單調區間理解不準致誤

在研究函數問題時要時時刻刻想到函數的圖像,學會從函數圖像上去分析問題、尋找解決問題的方法.對於函數的幾個不同的單調遞增(減)區間,切忌使用並集,只要指明這幾個區間是該函數的單調遞增(減)區間即可.

判斷函數奇偶性忽略定義域致誤

判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域關於原點對稱,如果不具備這個條件,函數一定是非奇非偶函數.函數零點定理使用不當致誤如果函數y=f(x)在區間[a,b]上的圖像是一條連續的曲線,並且有f(a)f(b)0,那麼,函數y=f(x)在區間(a,b)內有零點,但f(a)f(b)0時,不能否定函數y=f(x)在(a,b)內有零點.函數的零點有變號零點和不變號零點,對於不變號零點函數的零點定理是無能為力的,在解決函數的零點問題時要注意這個問題.

導數的幾何意義不明致誤

函數在一點處的導數值是函數圖像在該點處的切線的斜率.但在許多問題中,往往是要解決過函數圖像外的一點向函數圖像上引切線的問題,解決這類問題的基本思想是設出切點座標,根據導數的幾何意義寫出切線方程.然後根據題目中給出的其他條件列方程(組)求解.因此解題中要分清是在某點處的切線,還是過某點的切線

導數與極值關係不清致

f(x0)=0只是可導函數f(x)在x0處取得極值的必要條件,即必須有這個條件,但只有這個條件還不夠,還要考慮是否滿足f(x)在x0兩側異號.另外,已知極值點求參數時要進行檢驗.

三角函數的單調性判斷致誤

對於函數y=Asin(x+)的單調性,當0時,由於內層函數u=x+是單調遞增的,所以該函數的單調性和y=sinx的單調性相同,故可完全按照函數y=sinx的單調區間解決;但當0時,內層函數u=x+是單調遞減的,此時該函數的單調性和函數y=sinx的單調性相反,就不能再按照函數y=sinx的單調性解決,一般是根據三角函數的奇偶性將內層函數的係數變為正數後再加以解決.對於帶有絕對值的三角函數應該根據圖像,從直觀上進行判斷.

圖像變換方向把握不準致誤

函數y=Asin(x+)(其中A0,0,xR)的圖像可看作由下面的方法得到:(1)把正弦曲線上的所有點向左(當0時)或向右(當0時)平行移動||個單位長度;(2)再把所得各點橫座標縮短(當1時)或伸長(當01時)到原來的1倍(縱座標不變);(3)再把所得各點的縱座標伸長(當A1時)或縮短(當0

忽視零向量致誤

零向量是向量中最特殊的向量,規定零向量的長度為0,其方向是任意的,零向量與任意向量都共線.它在向量中的位置正如實數中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視.

向量夾角範圍不清致誤

解題時要全面考慮問題.數學試題中往往隱含着一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當ab0時,a與b的夾角不一定為鈍角,要注意的情況.

an與Sn關係不清致誤

在數列問題中,數列的通項an與其前n項和Sn之間存在下列關係:an=S1,n=1,Sn-Sn-1,n2.這個關係對任意數列都是成立的,但要注意的是這個關係式是分段的,在n=1和n2時這個關係式具有完全不同的表現形式,這也是解題中經常出錯的一個地方,在使用這個關係式時要牢牢記住其分段的特點.

對數列的定義、性質理解錯誤

等差數列的前n項和在公差不為零時是關於n的常數項為零的二次函數;一般地,有結論若數列{an}的前n項和Sn=an2+bn+c(a,b,cR),則數列{an}為等差數列的充要條件是c=0在等差數列中,Sm,S2m-Sm,S3m-S2m(mN*)是等差數列.

數列中的最值錯誤

數列問題中其通項公式、前n項和公式都是關於正整數n的函數,要善於從函數的觀點認識和理解數列問題.數列的通項an與前n項和Sn的關係是大學聯考的命題重點,解題時要注意把n=1和n2分開討論,再看能不能統一.在關於正整數n的二次函數中其取最值的點要根據正整數距離二次函數的對稱軸的遠近而定.

錯位相減求和項處理不當致誤

錯位相減求和法的適用條件:數列是由一個等差數列和一個等比數列對應項的乘積所組成的,求其前n項和.基本方法是設這個和式為Sn,在這個和式兩端同時乘以等比數列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉化為以求一個等比數列的前n項和或前n-1項和為主的求和問題.這裏最容易出現問題的就是錯位相減後對剩餘項的處理.

不等式性質應用不當致誤

在使用不等式的基本性質進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質成立的前提條件就會出現錯誤.

忽視基本不等式應用條件致誤

利用基本不等式a+b2ab以及變式aba+b22等求函數的最值時,務必注意a,b為正數(或a,b非負),ab或a+b其中之一應是定值,特別要注意等號成立的條件.對形如y=ax+bx(a,b0)的函數,在應用基本不等式求函數最值時,一定要注意ax,bx的符號,必要時要進行分類討論,另外要注意自變量x的取值範圍,在此範圍內等號能否取到.

解含參數的不等式分類不當

解形如ax2+bx+c0的不等式時,首先要考慮對x2的係數進行分類討論.當a=0時,這個不等式是一次不等式,解的時候還要對b,c進一步分類討論;當a0且0時,不等式可化為a(x-x1)(x-x2)0,其中x1,x2(x1

不等式恆成立問題致誤

解決不等式恆成立問題的常規求法是:藉助相應函數的單調性求解,其中的主要方法有數形結合法、變量分離法、主元法.通過最值產生結論.應注意恆成立與存在性問題的區別,如對任意x[a,b]都有f(x)g(x)成立,即f(x)-g(x)0的恆成立問題,但對存在x[a,b],使f(x)g(x)成立,則為存在性問題,即f(x)ming(x)max,應特別注意兩函數中的最大值與最小值的關係

忽視三視圖中的實、虛線致誤

三視圖是根據正投影原理進行繪製,嚴格按照長對正,高平齊,寬相等的規則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽.

面積體積計算轉化不靈活致誤

面積、體積的計算既需要學生有紮實的基礎知識,又要用到一些重要的思想方法,是大學聯考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法.(1)還台為錐的思想:這是處理台體時常用的思想方法.(2)割補法:求不規則圖形面積或幾何體體積時常用.(3)等積變換法:充分利用三稜錐的任意一個面都可作為底面的特點,靈活求解三稜錐的體積.(4)截面法:尤其是關於旋轉體及與旋轉體有關的組合問題,常畫出軸截面進行分析求解.

隨意推廣平面幾何中結論致誤

平面幾何中有些概念和性質,推廣到空間中不一定成立.例如過直線外一點只能作一條直線與已知直線垂直垂直於同一條直線的兩條直線平行等性質在空間中就不成立.

對摺疊與展開問題認識不清致誤

摺疊與展開是立體幾何中的常用思想方法,此類問題注意摺疊或展開過程中平面圖形與空間圖形中的變量與不變量,不僅要注意哪些變了,哪些沒變,還要注意位置關係的變化.

點、線、面位置關係不清致誤

關於空間點、線、面位置關係的組合判斷類試題是大學聯考全面考查考生對空間位置關係的判定和性質掌握程度的理想題型,歷來受到命題者的青睞,解決這類問題的基本思路有兩個:一是逐個尋找反例作出否定的判斷或逐個進行邏輯證明作出肯定的判斷;二是結合長方體模型或實際空間位置(如課桌、教室)作出判斷,但要注意定理應用準確、考慮問題全面細緻.

忽視斜率不存在致誤

在解決兩直線平行的相關問題時,若利用l1∥l2k1=k2來求解,則要注意其前提條件是兩直線不重合且斜率存在.如果忽略k1,k2不存在的情況,就會導致錯解.這類問題也可以利用如下的結論求解,即直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0平行的必要條件是A1B2-A2B1=0,在求出具體數值後代入檢驗,看看兩條直線是不是重合從而確定問題的答案.對於解決兩直線垂直的相關問題時也有類似的情況.利用l1l2k1k2=-1時,要注意其前提條件是k1與k2必須同時存在.利用直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0垂直的充要條件是A1A2+B1B2=0,就可以避免討論.

忽視零截距致誤

解決有關直線的截距問題時應注意兩點:一是求解時一定不要忽略截距為零這種特殊情況;二是要明確截距為零的直線不能寫成截距式.因此解決這類問題時要進行分類討論,不要漏掉截距為零時的情況.

忽視圓錐曲線定義中條件致誤

利用橢圓、雙曲線的定義解題時,要注意兩種曲線的定義形式及其限制條件.如在雙曲線的定義中,有兩點是缺一不可的:其一,絕對值;其二,2a|F1F2|.如果不滿足第一個條件,動點到兩定點的距離之差為常數,而不是差的絕對值為常數,那麼其軌跡只能是雙曲線的一支.

誤判直線與圓錐曲線位置關係

過定點的直線與雙曲線的位置關係問題,基本的解決思路有兩個:一是利用一元二次方程的判別式來確定,但一定要注意,利用判別式的前提是二次項係數不為零,當二次項係數為零時,直線與雙曲線的漸近線平行(或重合),也就是直線與雙曲線最多隻有一個交點;二是利用數形結合的思想,畫出圖形,根據圖形判斷直線和雙曲線各種位置關係.在直線與圓錐曲線的位置關係中,拋物線和雙曲線都有特殊情況,在解題時要注意,不要忘記其特殊性.

兩個計數原理不清致誤

分步加法計數原理與分類乘法計數原理是解決排列組合問題最基本的原理,故理解分類用加、分步用乘是解決排列組合問題的前提,在解題時,要分析計數對象的本質特徵與形成過程,按照事件的結果來分類,按照事件的發生過程來分步,然後應用兩個基本原理解決.對於較複雜的問題既要用到分類加法計數原理,又要用到分步乘法計數原理,一般是先分類,每一類中再分步,注意分類、分步時要不重複、不遺漏,對於至少、至多型問題除了可以用分類方法處理外,還可以用間接法處理.

排列、組合不分致誤

為了簡化問題和表達方便,解題時應將具有實際意義的排列組合問題符號化、數學化,建立適當的模型,再應用相關知識解決.建立模型的關鍵是判斷所求問題是排列問題還是組合問題,其依據主要是看元素的組成有沒有順序性,有順序性的是排列問題,無順序性的是組合問題.

混淆項係數與二項式係數致誤

在二項式(a+b)n的展開式中,其通項Tr+1=Crnan-rbr是指展開式的第r+1項,因此展開式中第1,2,3,,n項的二項式係數分別是C0n,C1n,C2n,,Cn-1n,而不是C1n,C2n,C3n,,Cnn.而項的係數是二項式係數與其他數字因數的積.

循環結束判斷不準致誤

控制循環結構的是計數變量和累加變量的變化規律以及循環結束的條件.在解答這類題目時首先要弄清楚這兩個變量的變化規律,其次要看清楚循環結束的條件,這個條件由輸出要求所決定,看清楚是滿足條件時結束還是不滿足條件時結束.

條件結構對條件判斷不準致誤

條件結構的程序框圖中對判斷條件的分類是逐級進行的,其中沒有遺漏也沒有重複,在解題時對判斷條件要仔細辨別,看清楚條件和函數的對應關係,對條件中的數值不要漏掉也不要重複了端點值.

複數的概念不清致誤

對於複數a+bi(a,bR),a叫做實部,b叫做虛部;當且僅當b=0時,複數a+bi(a,bR)是實數a;當b0時,複數z=a+bi叫做虛數;當a=0且b0時,z=bi叫做純虛數.解決複數概念類試題要仔細區分以上概念差別,防止出錯.另外,i2=-1是實現實數與虛數互化的橋樑,要適時進行轉化,解題時極易丟掉-而出錯.

大學聯考數學易失分知識點5

  1.遺忘空集致誤

由於空集是任何非空集合的真子集,因此B=?時也滿足B?A.解含有參數的集合問題時,要特別注意當參數在某個範圍內取值時所給的集合可能是空集這種情況.

  2.忽視集合元素的三性致誤

集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含着對字母參數的一些要求.

  3.混淆命題的否定與否命題

命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論.

  4.充分條件、必要條件顛倒致誤

對於兩個條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件.解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據充分條件和必要條件的概念作出準確的判斷.

  5.“或”“且”“非”理解不準致誤

命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假).求參數取值範圍的題目,也可以把“或”“且”“非”與集合的“並”“交”“補”對應起來進行理解,通過集合的運算求解.

  6.函數的單調區間理解不準致誤

在研究函數問題時要時時刻刻想到“函數的圖像”,學會從函數圖像上去分析問題、尋找解決問題的方法.對於函數的幾個不同的單調遞增(減)區間,切忌使用並集,只要指明這幾個區間是該函數的單調遞增(減)區間即可.

  7.判斷函數奇偶性忽略定義域致誤

判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域關於原點對稱,如果不具備這個條件,函數一定是非奇非偶函數.

  8.函數零點定理使用不當致誤

如果函數y=f(x)在區間[a,b]上的圖像是一條連續的曲線,並且有f(a)f(b)<0 y="f(x)在區間(a,b)內有零點,但f(a)f(b)">0時,不能否定函數y=f(x)在(a,b)內有零點.函數的零點有“變號零點”和“不變號零點”,對於“不變號零點”函數的零點定理是“無能為力”的,在解決函數的零點問題時要注意這個問題.

  9.導數的幾何意義不明致誤

函數在一點處的導數值是函數圖像在該點處的切線的斜率.但在許多問題中,往往是要解決過函數圖像外的一點向函數圖像上引切線的問題,解決這類問題的基本思想是設出切點座標,根據導數的幾何意義寫出切線方程.然後根據題目中給出的其他條件列方程(組)求解.因此解題中要分清是“在某點處的切線”,還是“過某點的切線”

  10.導數與極值關係不清致誤

f′(x0)=0只是可導函數f(x)在x0處取得極值的必要條件,即必須有這個條件,但只有這個條件還不夠,還要考慮是否滿足f′(x)在x0兩側異號.另外,已知極值點求參數時要進行檢驗.

  11.三角函數的單調性判斷致誤

對於函數y=Asin(ωx+φ)的單調性,當ω>0時,由於內層函數u=ωx+φ是單調遞增的,所以該函數的單調性和y=sin?x的單調性相同,故可完全按照函數y=sin?x的單調區間解決;但當ω<0時,內層函數u=ωx+φ是單調遞減的,此時該函數的單調性和函數y=sin?x的單調性相反,就不能再按照函數y=sin?x的單調性解決,一般是根據三角函數的奇偶性將內層函數的係數變為正數後再加以解決.對於帶有絕對值的三角函數應該根據圖像,從直觀上進行判斷.

  12.圖像變換方向把握不準致誤

函數y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的圖像可看作由下面的方法得到:(1)把正弦曲線上的所有點向左(當φ>0時)或向右(當φ<0 2="">1時)或伸長(當0<ω<1 1="" 3="" a="">1時)或縮短(當0

  13.忽視零向量致誤

零向量是向量中最特殊的向量,規定零向量的長度為0,其方向是任意的,零向量與任意向量都共線.它在向量中的位置正如實數中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視.

  14.向量夾角範圍不清致誤

解題時要全面考慮問題.數學試題中往往隱含着一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況.

  與Sn關係不清致誤

在數列問題中,數列的通項an與其前n項和Sn之間存在下列關係:an=S1,n=1,Sn-Sn-1,n≥2.這個關係對任意數列都是成立的,但要注意的是這個關係式是分段的,在n=1和n≥2時這個關係式具有完全不同的表現形式,這也是解題中經常出錯的一個地方,在使用這個關係式時要牢牢記住其“分段”的特點.

  16.對數列的定義、性質理解錯誤

等差數列的前n項和在公差不為零時是關於n的常數項為零的二次函數;一般地,有結論“若數列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數列{an}為等差數列的充要條件是c=0”;在等差數列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數列.

  17.數列中的最值錯誤

數列問題中其通項公式、前n項和公式都是關於正整數n的函數,要善於從函數的觀點認識和理解數列問題.數列的通項an與前n項和Sn的關係是大學聯考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統一.在關於正整數n的二次函數中其取最值的點要根據正整數距離二次函數的對稱軸的遠近而定.

  18.錯位相減求和項處理不當致誤

錯位相減求和法的適用條件:數列是由一個等差數列和一個等比數列對應項的乘積所組成的,求其前n項和.基本方法是設這個和式為Sn,在這個和式兩端同時乘以等比數列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉化為以求一個等比數列的前n項和或前n-1項和為主的求和問題.這裏最容易出現問題的就是錯位相減後對剩餘項的處理.

  19.不等式性質應用不當致誤

在使用不等式的基本性質進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質成立的前提條件就會出現錯誤.

  20.忽視基本不等式應用條件致誤

利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數的最值時,務必注意a,b為正數(或a,b非負),ab或a+b其中之一應是定值,特別要注意等號成立的條件.對形如y=ax+bx(a,b>0)的函數,在應用基本不等式求函數最值時,一定要注意ax,bx的符號,必要時要進行分類討論,另外要注意自變量x的取值範圍,在此範圍內等號能否取到.

  21.解含參數的不等式分類不當

解形如ax2+bx+c>0的不等式時,首先要考慮對x2的係數進行分類討論.當a=0時,這個不等式是一次不等式,解的時候還要對b,c進一步分類討論;當a≠0且Δ>0時,不等式可化為a(x-x1)(x-x2)>0,其中x1,x2(x1

  22.不等式恆成立問題致誤

解決不等式恆成立問題的常規求法是:藉助相應函數的單調性求解,其中的主要方法有數形結合法、變量分離法、主元法.通過最值產生結論.應注意恆成立與存在性問題的區別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恆成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應特別注意兩函數中的最大值與最小值的關係

  23.忽視三視圖中的實、虛線致誤

三視圖是根據正投影原理進行繪製,嚴格按照“長對正,高平齊,寬相等”的規則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽.

  24.面積體積計算轉化不靈活致誤

面積、體積的計算既需要學生有紮實的基礎知識,又要用到一些重要的思想方法,是大學聯考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法.(1)還台為錐的思想:這是處理台體時常用的思想方法.(2)割補法:求不規則圖形面積或幾何體體積時常用.(3)等積變換法:充分利用三稜錐的任意一個面都可作為底面的特點,靈活求解三稜錐的體積.(4)截面法:尤其是關於旋轉體及與旋轉體有關的組合問題,常畫出軸截面進行分析求解.

  25.隨意推廣平面幾何中結論致誤

平面幾何中有些概念和性質,推廣到空間中不一定成立.例如“過直線外一點只能作一條直線與已知直線垂直”“垂直於同一條直線的兩條直線平行”等性質在空間中就不成立.

  26.對摺疊與展開問題認識不清致誤

摺疊與展開是立體幾何中的常用思想方法,此類問題注意摺疊或展開過程中平面圖形與空間圖形中的變量與不變量,不僅要注意哪些變了,哪些沒變,還要注意位置關係的變化.

  27.點、線、面位置關係不清致誤

關於空間點、線、面位置關係的組合判斷類試題是大學聯考全面考查考生對空間位置關係的判定和性質掌握程度的理想題型,歷來受到命題者的青睞,解決這類問題的基本思路有兩個:一是逐個尋找反例作出否定的判斷或逐個進行邏輯證明作出肯定的判斷;二是結合長方體模型或實際空間位置(如課桌、教室)作出判斷,但要注意定理應用準確、考慮問題全面細緻.

  28.忽視斜率不存在致誤

在解決兩直線平行的相關問題時,若利用l1∥l2?k1=k2來求解,則要注意其前提條件是兩直線不重合且斜率存在.如果忽略k1,k2不存在的情況,就會導致錯解.這類問題也可以利用如下的結論求解,即直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0平行的必要條件是A1B2-A2B1=0,在求出具體數值後代入檢驗,看看兩條直線是不是重合從而確定問題的答案.對於解決兩直線垂直的相關問題時也有類似的情況.利用l1⊥l2?k1·k2=-1時,要注意其前提條件是k1與k2必須同時存在.利用直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0垂直的充要條件是A1A2+B1B2=0,就可以避免討論.

  29.忽視零截距致誤

解決有關直線的截距問題時應注意兩點:一是求解時一定不要忽略截距為零這種特殊情況;二是要明確截距為零的直線不能寫成截距式.因此解決這類問題時要進行分類討論,不要漏掉截距為零時的情況.

  30.忽視圓錐曲線定義中條件致誤

利用橢圓、雙曲線的定義解題時,要注意兩種曲線的定義形式及其限制條件.如在雙曲線的定義中,有兩點是缺一不可的:其一,絕對值;其二,2a<|F1F2|.如果不滿足第一個條件,動點到兩定點的距離之差為常數,而不是差的絕對值為常數,那麼其軌跡只能是雙曲線的一支.

  31.誤判直線與圓錐曲線位置關係

過定點的直線與雙曲線的位置關係問題,基本的解決思路有兩個:一是利用一元二次方程的判別式來確定,但一定要注意,利用判別式的前提是二次項係數不為零,當二次項係數為零時,直線與雙曲線的漸近線平行(或重合),也就是直線與雙曲線最多隻有一個交點;二是利用數形結合的思想,畫出圖形,根據圖形判斷直線和雙曲線各種位置關係.在直線與圓錐曲線的位置關係中,拋物線和雙曲線都有特殊情況,在解題時要注意,不要忘記其特殊性.

  32.兩個計數原理不清致誤

分步加法計數原理與分類乘法計數原理是解決排列組合問題最基本的原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提,在解題時,要分析計數對象的本質特徵與形成過程,按照事件的結果來分類,按照事件的發生過程來分步,然後應用兩個基本原理解決.對於較複雜的問題既要用到分類加法計數原理,又要用到分步乘法計數原理,一般是先分類,每一類中再分步,注意分類、分步時要不重複、不遺漏,對於“至少、至多”型問題除了可以用分類方法處理外,還可以用間接法處理.

  33.排列、組合不分致誤

為了簡化問題和表達方便,解題時應將具有實際意義的排列組合問題符號化、數學化,建立適當的模型,再應用相關知識解決.建立模型的關鍵是判斷所求問題是排列問題還是組合問題,其依據主要是看元素的組成有沒有順序性,有順序性的是排列問題,無順序性的是組合問題.

  34.混淆項係數與二項式係數致誤

在二項式(a+b)n的展開式中,其通項Tr+1=Crnan-rbr是指展開式的第r+1項,因此展開式中第1,2,3,…,n項的二項式係數分別是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,Cnn.而項的係數是二項式係數與其他數字因數的積.

  35.循環結束判斷不準致誤

控制循環結構的是計數變量和累加變量的變化規律以及循環結束的條件.在解答這類題目時首先要弄清楚這兩個變量的變化規律,其次要看清楚循環結束的條件,這個條件由輸出要求所決定,看清楚是滿足條件時結束還是不滿足條件時結束.

  36.條件結構對條件判斷不準致誤

條件結構的程序框圖中對判斷條件的分類是逐級進行的,其中沒有遺漏也沒有重複,在解題時對判斷條件要仔細辨別,看清楚條件和函數的對應關係,對條件中的數值不要漏掉也不要重複了端點值.

  37.複數的概念不清致誤

對於複數a+bi(a,b∈R),a叫做實部,b叫做虛部;當且僅當b=0時,複數a+bi(a,b∈R)是實數a;當b≠0時,複數z=a+bi叫做虛數;當a=0且b≠0時,z=bi叫做純虛數.解決複數概念類試題要仔細區分以上概念差別,防止出錯.另外,i2=-1是實現實數與虛數互化的橋樑,要適時進行轉化,解題時極易丟掉“-”而出錯.