糯米文學吧

位置:首頁 > 範文 > 生活經驗

《比例的意義》教案集合15篇

作為一名老師,通常會被要求編寫教案,教案是教材及大綱與課堂教學的紐帶和橋樑。那麼什麼樣的教案才是好的呢?下面是小編為大家整理的《比例的意義》教案,歡迎大家分享。

《比例的意義》教案集合15篇

《比例的意義》教案1

教學內容:教材第30~31頁比例的意義和基本性質,練習六第1~5題。

教學要求:使學生理解比例的意義和基本性質,能用比例的意義或性質判斷兩個比成不成比例;通過教學培養學生初步的綜合、概括能力。

教學重點:理解比例的意義和基本性質。

教學難點:用比例的意義或性質判斷兩個比成不成比例。

教學理念:以學生為主體,把較多的時間和空間留給學生探索、交流、概括。

教具、學具準備:小黑板,教學課件

教學步驟

一、複習鋪墊

l.什麼叫做兩個數的比?請你説出兩個比。(教師板書)

2.什麼是比的比值?上面兩個比的比值是多少?

3.引入新課。

我們已經認識了比,知道怎樣求比值。今天就根據比和比值來學習比例,並且認識比例的基本性質。(板書課題)

二、導入新課

1.教學比例的意義。

讓學生算出下面各比的比值,再比較每組裏兩個比的比值有什麼關係。(指名板演)

(1) 3 :5 24 :40 (2) :7.5 :3

追問:比值相等,説明每組裏兩個比怎樣?

指出:表示兩個比相等的式子叫做比例。

説一説,上面兩個等式表示的是怎樣的式子?

2.下面兩個比之間的哪些○裏能填“=”,為什麼?

1 :2○3 :6 0.5 :0.2○5 :2

1.5 :3○15 :3:2○:1

提問:填了等號後的式子是什麼? 1.5 :3和15 :3為什麼不能組成比例?要判斷兩個比能不能組成比例,可以看它們的什麼?指出:要判斷兩個比是不是相等,可以看比值是不是相等;也可以把兩個比化簡後看是不是相同的兩個比。

3.教學例1。

出示例1,讓學生先寫出兩次買練習本的錢數和本數的比。提問:怎樣判斷這兩個比能不能組成比例?讓學生判斷並寫出比例。提問:能不能組成比例?(板書比例式)為什麼?強調:只有兩個比值相等的比才能組成比例。

讓學生根據比例的意義,在( )裏填上適當的數。

3 :6=5 :( ) 0.8 :( )=1 :

4.教學比例的基本性質。

向學生説明比例各部分的名稱。

讓學生看開始組成的兩個比例,説一説其中的內項和外項。讓學生計算上面比例裏兩個外項的積和兩個內項的積,並要求觀察,從中發現什麼。

5.判斷能否組成比例。

出示“3.6 :1.8和0.5 :0.25”。讓學生自己根據比例的基本性質判斷,如果能組成比例就寫出這個比例式。提問:2.6 :1.8和0.5 :0.25能組成比例嗎?

強調指出:根據比例的基本性質,也可以判斷兩個比能不能組成比例,判斷時可以先把兩個比看成是比例。如果兩個外項的積等於兩個內項的積,兩個比就能組成比例;如果不相等,就不能組成比例。

如果學生有困難,啟發用比值相等的方法推算。填寫以後,學生回答:為什麼填這個數?

讓學生口答結果。提問:從上面的計算裏,你發現了什麼,出示比例的基本性質,並讓學生説一説。如果把比例寫成分數形式,請你説一説外項和內項。提問:在這個比例裏交叉相乘的積有什麼關係?追問:為什麼交叉相乘的積相等?

三、鞏固練習

1. 提問:什麼叫做比?什麼叫做比例?比和比例有什麼不同的地方?怎樣判斷兩個比能不能組成比例?

2. 完成“練一練”。

指名4人板演.集體訂正.説説是怎樣判斷的?

3.做練習六第1題。

讓學生做在練習本上。如果能組成比例就再寫出比例。提問練習情況並板書,讓學生説明“為什麼”。

4.做練習六第2題。

讓學生判斷,在練習本上寫出來。提問:哪一個比和:4組成比例?為什麼,(比值相等,或化簡後兩個比相同)

5.完成練習六第3題。

學生先觀察、計算,然後口答,説明理由。

四、全課小結

這堂課學習了什麼內容?什麼叫做比例?比例的基本性質是什麼?可以怎樣判斷兩個比能不能組成比例?

五、佈置作業

練習六第4、5題。

《比例的意義》教案2

教學內容:教科書第9—10頁比例的意義和基本性質.練習四的第1—3題。

教學目的:使學生理解比例的意義和基本性質。

教學過程():

一、教學比例的意義

1.複習。

(1)教師:請同學們回憶一下上學期我們學過的比的知識.誰能説説什麼叫做比?並舉例説明什麼是比的前項、後項和比值。教師把學生舉的例子板書出來,並註明比的各部分的名稱。

(2)教師:我們知道了比的前後項相除所得的商叫做比值,你們會求比值嗎?

教師板書出下面幾組比,讓學生求出它們的比值。

12:16 :1 4·5:2.7 10:6

學生求出各比的比值後,再提

“請同學們觀察一下,哪兩個比的比值相等?”(4.5:2.7的比值和10:6的比值相等。)

教師説明:因為這兩個比的比值相等,所以這兩個比也是相等的,我們把它們用等號連起來。(板書:4.5:2.7=10:6)像這樣表示兩個比相等的式子叫做什麼呢?

這就是這節課我們要學習的內容。(板書課題:比例的意義)

2.教學比例的意義。

(1)出示例1:“一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米。”指名學生讀題。

教師:這道題涉及到時間和路程兩個量的關係,我們用表格把它們表示出來。表格的第一欄表示時間,單位“時”,第二欄表示路程,單位“千米”。這輛汽車第一次2小時行駛多少千米?第二次5小時行駛多少千米?(邊問邊填寫表格。)

“你能根據這個表,分別寫出第一、二次所行駛的路程和時間的比嗎?”教師根據學生的回答。

板書:第一次所行駛的路程和時間的比是80:2

第二次所行駛的路程和時間的比是200:5

然後讓學生算出這兩個比的比值。指名學生回答,教師板書:80:2=40, 200:5=40。讓學生觀察這兩個比的比值。再提問:

“你們發現了什麼?”(這兩個比的比值都是40。)

“所以這兩個比怎麼樣?”(這兩個比相等。)

教師説明:因為這兩個比相等,所以可以把它們用等號連起來。(板書:80:2=200:5或 = )像這樣(指着這個式子和複習題的式子4. 5:2.7=10:6)表示兩個比相等的式子叫做比例。

指着比例式80:2=200:5,提問:

“誰能説説什麼叫做比例?”引導學生觀察是表示兩個比相等。然後板書:表示兩個比相等的式子叫做比例。並讓學生齊讀一遍。

“從比例的意義我們可以知道.比例是由幾個比組成的?這兩個比必須具備什麼條件:因此判斷兩個比能不能組成比例,關鍵是看什麼?如果不能一眼看出兩個比是不是相等的,怎麼辦?”

根據學生的回答,教師小結:通過上面的學習,我們知道了比例是由兩個相等的 比組成的。在判斷兩個比能不能組成比例時,關鍵是看這兩個比是不是相等。如果不能一限看出兩個比是不是相等?可以先分別把兩個比化簡以後再看。例如判斷10;12和35:1:這兩個比能不能組成比例,先要算出10:12= ,35:42= ,所以10:12=35:42:(以上舉例邊説邊板書。)

(2)比較“比”和“比例”兩個概念。

教師:上學期我們學習了“比”,現在又知道了“比例”的意義,那麼“比”和“比例”有什麼區別呢?

引導學生從意義上、項數上進行對比,最後教師歸納:比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。

(3)鞏固練習。

①用手勢判斷下面卡片上的兩個比能不能組成比例。(能,就用張開拇指和食指表 示;不能就用兩手的食指交叉表示。)

6:3和12:6 35:7和45:9

20:5和.16:8 0.8:0.4和 : :

學生判斷後,指名説出判斷的根據。

②做第10頁的“做一做”。

讓學生看書,不抄題,直接把能組成比例的兩個比寫在練習本上,教師邊巡視邊批改,對做得不對的,讓他們説説是怎樣做的,看看自己做得對不對。

③給出2、3、4、6四個數,讓學生組成不同的比例(不要求舉全)。

④做練習四的第3題。

對於能組成比例的四個數,把能組成的比例寫出來:組成的比例只要能成立就可以。

第4小題,給出的四個數都是分數,在寫比例式時,也要讓學生寫成分數形式。

二、教學比例的基本性質

1.教學比例各部分的名稱。

教師:同學們能正確地判斷兩個比能不能組成比例了,那麼比例各部分的名稱是什麼?請同學們翻開教科書第10頁看第6行到9行。看看什麼叫比例的項、外項、內項。(學生看書時,教師板書:80:2=200:5)

指名讓學生指出板書出的比例的外項、內項。隨着學生的回答教師接着板書如下:

80 :2=:200 :5

內項

外項

2.教學比例的基本性質。

教師:我們知道了比例各部分的名稱,那麼比例有什麼性質呢?現在我們就來研究。(在比例的意義後面板書:比例的基本性質)請同學們分別計算出這個比例中兩個內項的積和兩個外項的積。教師板書:

兩個外項的積是80×5=400

兩個內項的積是2×200=400

“你發現了什麼?”(兩個外項的積等於兩個內項的積。)板書:80×5=2×20“是不是所有的比例式都是這樣的呢?”讓學生分組計算前面判斷過的比例式。

“通過計算,大家發現所有的比例式都有這個共同的規律。誰能用一句話把這個規律説出來?”可多讓一些學生説,説得不完整也沒關係.讓後説的同學在先説的同學的基礎上説得更完整。

最後教師歸納並板書出:在比例裏.兩個外項的積等於兩個內項的積。並説明這叫做比例的基本性質。

“如果把比例寫成分數形式,比例的基本性質又是怎樣的呢?”(指着80;2=200:5)教師邊問邊改寫成: =

“這個比例的外項是哪兩個數呢?內項呢?”

“因為兩個內項的積等於兩個外項的積,所以,當比例寫成分數的形式.等號兩 端的分子和分母分別交叉相乘的積怎麼樣?”邊問邊畫出交叉線,如: =

學生回答後,教師強調:如果把比例寫成分數形式,比例的基本性質就是等號兩端分子和分母分別交叉相乘,積相等。板書: = 80×5=2×200

3.鞏固練習。

教師:前面要判斷兩個比是不是成比例,我們是通過計算它們的比值來判斷的。學過比例的基本性質以後,也可以應用比例的基本性質來判斷兩個比能不能成比例。

(1)應用比例的基本性質判斷3:4和6:8能不能組成比例。

教師:我們可以這樣想:先假設3:4和6:8可以組成比例。再算出兩個外項的積(板書:兩個外項的積:3×8=:1)和兩個內項的積(板書:兩個內項的積:4×6=24)。因為3×8=4×6(板書出來).也就是説兩個外項的積等於兩個內項的積,所以

3:4和6:8可以組成比例。(邊説邊板書:3:4=6:8)

(2)做第11頁“做一做”的第1題。

三、小結

教師:通過這節課,我們學到了什麼知識?什麼是比例?比例的基本性質是什麼?應用比例的基本性質可以做什麼?

四、作業

練習四的第2題。

《比例的意義》教案3

1.使學生初步認識正比例的意義、掌握正比例意義的變化規律。

2.學會判斷成正比例關係的量。

3.進一步培養學生觀察、分析、概括的能力。

教學重點和難點

理解正比例的意義,掌握正比例變化的規律。

教學過程設計

(一)複習準備

請同學口述三量關係:

(1)路程、速度、時間;(2)單價、總價、數量;(3)工作效率、時間、工作總量。

(學生口述關係式、老師板書。)

(二)學習新課

今天我們進一步研究這些數量關係中的一些特徵,請同學們回答老師的問題。

幻燈出示:

一列火車1小時行60千米,2小時行多少千米?3小時、4小時、5小時……各行多少千米?

生:60千米、120幹米、180千米……

師:根據剛才口答的問題,整理一個表格。

出示例1。(小黑板)

例1 一列火車行駛的時間和所行的路程如下表。

師:(看着表格)回答下面的問題。表中有幾種量?是什麼?

生:表中有兩種量,時間和路程。

師:路程是怎樣隨着時間變化的?

生:時間1小時,路程是60千米;2小時,路程為120千米;3小時,路程為180千米……

師:像這樣一種量變化,另一種量也隨着變化,這兩種量就叫做兩種相關聯的量。

(板書:兩種相關聯的量)

師:表中誰和誰是兩種相關聯的量?

生:時間和路程是兩種相關聯的量。

師:我們看一看他們之間是怎樣變化的?

生:時間由1小時變2小時,路程由60千米變為120千米……時間擴大了,路程也隨着擴大,路程隨着時間的變化而變化。

師:現在我們從後往前看,時間由8小時變為7小時、6小時、4小時……路程又是如何變化的?

生:路程由480千米變為420千米、360千米……

師:從上面變化的情況,你發現了什麼樣的規律?(同桌進行討論。)

生:時間從小到大,路程也隨着從小到大變化;時間從大到小,路程也隨着從大到小變化。

師:我們對比一下老師提出的兩個問題,互相討論一下,這兩種變化的原因是什麼?

(分組討論)

師:請同學發表意見。

生:第一題時間擴大了,行的路程也隨着擴大;第二題時間縮小了,所行的路程也隨着縮短了。

師:我們對這種變化規律簡稱為“同擴同縮”。(板書)讓我們再看一看,它們擴大縮小的變化規律是什麼?

師:根據時間和路程可以求出什麼?

生:可以求出速度。

師:這個速度是誰與誰的比?它們的結果又叫什麼?

生:這個速度是路程和時間的比,它們的結果是比值。

師:這個60實際是什麼?變化了嗎?

生:這個60是火車的速度,是路程和時間的比值,也是路程和時間的商,速度不變。

駛多少千米,速度都是60千米,這個速度是一定的,是固定不變的量,我們簡稱為定量。

師:誰是定量時,兩種相關聯的量同擴同縮?

生:速度一定時,時間和路程同擴同縮。

師:對。這兩種相關聯的量的商,也就是比值一定時,它們同擴同縮。我們看着表再算一算表中路程與時間相對應的商是不是一定。

(學生口算驗證。)

生:都是60千米,速度不變,符合變化的規律,同擴同縮。

師:同學們總結得很好。時間和路程是兩種相關聯的量,路程是隨着時間的變化而變化的:時間擴大,路程也隨着擴大;時間縮小,路程也隨着縮小。擴大和縮小的規律是:路程和時間的比的比值總是一樣的。

師:誰能像老師這樣敍述一遍?

(看黑板引導學生口述。)

師:我們再看一題,研究一下它的變化規律。

出示例2。(小黑板)

例2 某種花布的米數和總價如下表:

(板書)

按題目要求回答下列問題。(幻燈)

(1)表中有哪兩種量?

(2)誰和誰是相關聯的量?關係式是什麼?

(3)總價是怎樣隨着米數變化的?

(4)相對應的總價和米數的比各是多少?

(5)誰是定量?

(6)它們的變化規律是什麼?

生:(答略)

師:比較一下兩個例題,它們有什麼共同點?

生:都有兩種相關聯的量,一種量變化,另一種量也隨着變化。

師:對。兩種相關聯的量,一種量變化,另一種量也隨着變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關係叫做正比例關係。這就是今天我們學習的新內容。(板書課題:正比例的意義)

師:你能按照老師説的敍述一下例1中兩個相關聯的量之間的關係嗎?

生:路程隨着時間的變化而變化,它們的比值(也就是速度)一定,所以路程和時間是成正比例的量,它們的關係是正比例關係。

師:想一想例2,你能敍述它們是不是成正比例的量?為什麼?(兩人互相試説。)

師:很好。請打開書,看書上是怎樣總結的?

(生看書,並畫出重點,讀一遍意義。)

師:如果表中第一種量用x表示,第二種量用y表示,定量用k表示,誰能用字母表示成正比例的兩種相關聯的量與定量的關係?

師:你能舉出日常生活中成正比例關係的兩種相關聯的量的例子嗎?

生:(答略)

師:日常生活和生產中有很多相關聯的量,有的成正比例關係,有的是相關聯,但不成比例關係。所以判斷兩種相關聯的量是否成正比例關係,要抓住相對應的兩個量是否商(比值)一定,只有商(比值)一定時,才能成正比例關係。

(三)鞏固反饋

1.課本上的“做一做”。

2.幻燈出示題,並説明理由。

(1)蘋果的單價一定,買蘋果的數量和總價( )。

(2)每小時織布米數一定,織布總米數和時間( )。

(3)小明的年齡和體重( )。

(四)課堂總結

師:今天主要講的是什麼內容?你是如何理解的?

(生自己總結,舉手發言。)

師:打開書,並説出正比例的意義。有什麼不明白的地方提出來。

(五)佈置作業

(略)

課堂教學設計説明

第一部分:複習三量關係,為本節內容引路。

第二部分:新課從創設正比例表象入手,引導學生主動、自覺地觀察、分析、概括,緊緊圍繞判斷正比例的兩種相關聯的兩個量、商一定展開思路,結合例題中的數據整理知識,發現規律,由討論表象到抽象概念,使知識得到深化。

第三部分:鞏固練習。幫助學生鞏固新知識,由此驗證學生對知識的理解和掌握情況,幫助學生掌握判斷方法。最後指導學生看書,抓住本節重點,突破難點。安排適當的練習題,在反覆的練習中,加強概念的理解,牢牢掌握住判斷的方法。合理安排作業,進一步鞏固所學知識。

總之,在設計教案的過程中,力爭體現教師為主導,學生為主體的精神,使學生認識結構不斷髮展,認識水平不斷提高,做到在加強雙基的同時發展智力,培養能力,併為以後學習打下良好的基礎。

板書設計

《比例的意義》教案4

教學過程:

一、複習鋪墊

1、下面兩種量是不是成正比例?為什麼?

購買練習本的價錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

2、成正比例的量有什麼特徵?

二、探究新知

1、導入新課:這節課我們繼續學習常見的數量關係中的另一種特徵成反比例的量。

2、教學P42例3。

(1)引導學生觀察上表內數據,然後回答下面問題:

A、表中有哪兩種量?這兩種量相關聯嗎?為什麼?

B、水的高度是否隨着底面積的變化而變化?怎樣變化的?

C、表中兩個相對應的數的比值各是多少?一定嗎?兩個相對應的數的積各是多少?你能從中發現什麼規律嗎?

D、這個積表示什麼?寫出表示它們之間的數量關係式

(2)從中你發現了什麼?這與複習題相比有什麼不同?

A、學生討論交流。

B、引導學生回答:

(3)教師引導學生明確:因為水的體積一定,所以水的高度隨着底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就説高度和底面積成反比例關係,高度和底面積叫做成反比例的量。

(4)如果用字母x和y表示兩種相關的量,用k表示它們的積一定,反比例可以用一個什麼樣的式子表示?板書:xy=k(一定)

三、鞏固練習

1、想一想:成反比例的量應具備什麼條件?

2、判斷下面每題中的兩個量是不是成反比例,並説明理由。

(1)路程一定,速度和時間。

(2)小明從家到學校,每分走的速度和所需時間。

(3)平行四邊形面積一定,底和高。

(4)小林做10道數學題,已做的題和沒有做的題。

(5)小明拿一些錢買鉛筆,單價和購買的數量。

(6)你能舉一個反比例的例子嗎?

四、全課小節

這節課我們學習了成反比例的量,知道了什麼樣的兩個量是成反比例的兩個量,也學會了怎樣判斷兩種量是不是成反比例。

五、課堂練習

P45~46練習七第6~11題。

教學目的:

1、理解反比例的意義,能根據反比例的意義,正確的判斷兩種量是否成反比例。

2、通過引導學生討論探究,分析合作,使學生進一步認識事物之間的聯繫和發展變化的規律。

3、初步滲透函數思想。

教學重點:引導學生總結出成反比例的量,是相關的兩種量中相對應的兩個數積一定,進而抽象概括出成反比例的關係式。

教學難點:利用反比例的意義,正確判斷兩個量是否成反比例。

《比例的意義》教案5

素質教育目標

(一)知識教學點

1.使學生理解正比例的意義。

2.能根據正比例的意義判斷兩種量是不是成正比例。

(二)能力訓練點

1.培養學生用發展變化的觀點來分析問題的能力。

2.培養學生抽象概括能力和分析判斷能力。

(三)德育滲透點

1.通過引導學生用發展變化的觀點來分析問題,使學生進一步受到辯證唯物主義觀點的啟蒙教育。

2.進一步滲透函數思想。

教學重點:使學生理解正比例的意義。

教學難點:引導學生通過觀察、思考發現兩種相關聯的量的變化規律,即它們相對應的數的比值一定,從而概括出正比例關係的概念。

教具學具準備:投影儀、投影片、小黑板。

教學步驟

一、鋪墊孕伏

用投影逐一出示下列題目,請同學回答:

1.已知路程和時間,怎樣求速度?

2.已知總價和數量,怎樣求單價?

3.已知工作總量和工作時間,怎樣求工作效率?

二、探究新知

1.導入新課:這些都是我們已經學過的常見的數量關係。這節課,我們繼續研究這些數量關係中的一些特徵。

2.教學例1

(1)投影出示:一列火車1小時行駛60千米,2小時行駛120千米,3小時行駛180千米,4小時行駛240千米,5小時行駛300千米,6小時行駛360千米,7小時行駛420千米,8小時行駛480千米……

(2)出示下表,並根據上述內容填表。

一列火車行駛的時間和所行的路程如下表

(3)邊填表邊思考:在填表過程中,你發現了什麼?

學生交流時,使之明確。

①表中有時間和路程兩種量。

②當時間是1小時,路程則是60千米,時間是2小時,路程是120千米……時間變化,路程也隨着變化,時間擴大,路程隨着擴大;時間縮小,路程也隨着縮小。

教師點撥:

像這樣,時間變化,路程也隨着變化,我們就説,時間和路程是兩種相關聯的量。(板書:兩種相關聯的量)

③如果學生沒有問題,教師提示:請每位同學任選一組相對應的數據,計算出路程與時間的比的比值。

教師問:根據計算,你發現了什麼?

引導學生得出:相對應的兩個數的比值都是60或都一樣,固定不變等。

教師指出:相對應的兩個數的比的比值都一樣或固定不變,在數學上叫做“一定”。(板書:相對應的兩個數的比值一定)

④比值60,實際就是火車的速度。用式子表示它們的關係就是:

(4)教師小結:

剛才同學們通過填表、交流,我們知道時間和路程是兩種相關聯的量,路程隨着時間的變化而變化。時間擴大,路程隨着擴大;時間縮小,路程也隨着縮小。它們擴大、縮小的規律是:路程和時間的比的比值總是一定的。

3.教學例2

(1)出示例2:在一間布店的櫃枱上,有一張寫着某種花布的米數和總價的表。

(2)觀察上表,引導學生明確:

①表中有數量(米數)和總價這兩種量,它們是兩種相關聯的量。

②總價隨米數的變化情況是:

米數擴大,總價隨着擴大;米數縮小,總價也隨着縮小。

③相對應的總價和米數的比的比值是一定的。

④比值3.1,實際就是這種花布的單價。用式子表示它們的關係就是:

(3)師生小結:通過剛才的觀察和分析,我們知道總價和米數也是兩種什麼樣的量?(兩種相關聯的量)為什麼?(總價隨着米數的變化而變化。)怎樣變化?(米數擴大,總價隨着擴大;米數縮小,總價隨着縮小。)它們擴大、縮小的規律是怎樣的?(總價和米數的比的比值總是一定的。)

4.抽象概括正比例的意義。

(1)比較例1、例2,思考並討論,這兩個例子有什麼共同點?

(2)學生初步交流時引導學生明確:

①例1中有路程和時間兩種量;例2中有米數和總價兩種量。即它們都有兩種相關聯的量;

②例1中時間變化,路程就隨着變化;例2中米數變化,總價也隨着變化。

教師點撥:像這樣,我們就可以説:一種量變化,另一種量也隨着變化。(板書)

③例1中路程與時間的比的比值一定:例2中總價與米數的比的比值一定。概括地講就是:兩種量中相對應的兩個數的比值(也就是商)一定。

(學生答不出來時,教師引導、點撥,並補充板書:兩種量中)

(3)引導學生抽象概括出兩例的共同點:

兩種相關聯的量,一種量變化,另一種量也隨着變化,這兩種量中相對應的兩個數的比值(也就是商)一定。

(4)教師指明:兩種相關聯的量,一種變化,另一種量也隨着變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關係叫做正比例關係。

(補充板書:如果這成正比例的量正比例關係)

這就是我們這節課學習的“正比例的意義”(板書課題)

(5)看書19、20頁的內容,進一步理解正比例的意義。

(6)教師説明:在例1中,路程隨着時間的變化而變化,它們的比的比值(速度)保持一定,所以路程和時間是成正比例的量。

(7)想一想:在例2中,有哪兩種相關聯的量?它們是不是成正比例的量?為什麼?

(8)教師提出:如果字母x和y表示兩種相關聯的量,用k表示它們的比值(一定),正比例關係怎樣用字母表示出來?

(9)教師提出:根據正比例的意義以及表示正比例關係的式子想一想:構成正比例關係的兩種量必須具備哪些條件?

5.教學例3

(1)出示例3:每袋麪粉的重量一定,麪粉的總重量和袋數是不是成正比例?

(2)根據正比例的意義,由學生討論解答。

(3)彙報判斷結果,並説明判斷的根據。

教師板書:

麪粉的總重量和袋數是兩種相關聯的量。

所以麪粉的總重量和袋數成正比例。

6.反饋練習

讓學生試做第21頁的做一做,並訂正。

三、鞏固發展

1.完成練習三第1題。

先想一想成正比例的量要滿足哪幾個條件?再算出各表相對應數的比的比值。如果相等,列關係式判斷。第(3)題不成比例,訂正時要學生説明為什麼?

2.完成練習三第2題的(1)-(9)

先讓學生自己判斷,再訂正。

四、全課小結(師生共同進行)

通過這節課的學習,你都知道了什麼?怎樣判斷兩種量是否成正比例?

《比例的意義》教案6

教學內容:

比例的意義和基本性質 (省義務教材第十二冊)

教學目標:

1、理解和掌握比例的意義和基本性質,認識比例的各部分的名稱,體會數學的規律美。

2、利用比例知識解決實際問題。

3、培養學生自主參與的意識、主動探究的精神,激發學生的審美愉悦。培養學生進行初步的觀察、分析、比較、判斷、概括的能力,發展學生思維。

教學過程:

一、 談話導入,創設情境:

出示CAI課件(一張微型照片)。你能看出這是杭州哪一個景點的照片?的確,照片太小了,那現在老師將這張照片按一定比例放大一些,。由此出現一張平湖秋月的風景照。【誘發審美注意】

我們的祖國方圓960萬平方公里,幅員遼闊卻能在一張小小的地圖上清晰可見各地位置。建築設計師可將濱江四區的設計構想展示在一張紙上。這些,都要用到比例的知識,我們今天就來學習有關比例的一些知識。

二、 自主探究,學習新知

(一) 教學比例的意義

1、 8釐米

出示

6釐米

4釐米

3釐米

(1)根據表中給出的數量寫出有意義的比。

(2)哪些比是相關聯的?

(3)根據以往經驗,可將相等的兩個比怎樣?(用等號連接)

教師並指出這些式子就是比例。

2、 讓學生任意寫出比例,並讓學生用自己的語言描述比例的意義。

3、 教師板書:表示兩個比相等的式子叫做比例。比例也可用分數形式表示。

4、 寫出比值是1/3的兩個比,並組成比例。

(二) 教學比例的基本性質

1、 比例和比有什麼區別?

2、 認識比例的各部分

(1)讓學生自己取。

(2)組成比例的四個數叫做比例的項,兩端的兩項叫做比例的

外項,中間的兩項叫做比例的內項。

板書: 8 : 6 = 4 : 3

內 項

外 項

(3)讓學生找出自己舉的比例的內外項。

( )

12

2

( )

=

(4)找出分數形式比例的內外項位置又是怎樣的?

3、 出示 【啟迪學生思維,展開審美想象】

(1) 這個比例已知的是哪兩項,要求的又是哪兩項?學生試填。

(2) 學生反饋,教師板書。

(3) 你發現了什麼?

(4) 指導學生概括出比例的基本性質,並板書:在比例裏,兩個外項之積等於兩個內項之積。

4、 用比例性質驗證你所寫比例是否正確。

5、練習 8 : 12 = X : 45

0.5

X

20

32

=

求比例中的未知項,叫做解比例。

如何證明你的解是正確的?

(三) 小結:今天這堂課你有什麼收穫?

三、 鞏固練習

1、下面哪幾組中的兩個比可以組成比例。

4

1

12 : 24 和18 : 36

0.4 : 和0.4 : 0.15

14 : 8 和7 : 4

5

2

2、根據18 x 2 = 9 x 4 寫出比例。【體會到數學的邏輯美,規律美】

3、從1 、8、0.6、3、7五個數中

(1) 選出四個數,組成比例。

(2) 任意選出3個數,再配上另一個數,組成比例。

(3) 用所學知識進行檢驗。

四、 實際應用

不久前,汪駿強家的菜地邊高高矗立起一個新鐵塔,這天午後,陽光明媚,鄰居家剛讀一年級的小明又拉着汪駿強來到鐵塔下,玩着玩着,小明問道:“強強哥哥,這鐵塔幹嘛用?”“鐵塔嘛,架設高壓線用的,以後等電線架好了,可不能再來玩了,更不能攀登,高壓線可危險了!”“那這個鐵塔有多高壓呀?”

同學們,如果你是汪駿強,你準備怎麼辦?

執教者 方 豔

《比例的意義》教案7

教學目標

1.使學生理解正、反比例的意義,能夠初步判斷兩種相關聯的量是否成比例,成什麼比例.

2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.

3.滲透辯證唯物主義的觀點,進行運用變化觀點的啟蒙教育.

教學重難點

理解正反比例的意義,掌握正反比例的變化的規律.

教學過程

一、導入新課

(一)昨天老師買了一些蘋果,吃了一部分,你能想到什麼?

(二)教師提問

1.你為什麼馬上能想到還剩多少呢?

2.是不是因為吃了的和剩下的是兩種相關聯的量?

教師板書:兩種相關聯的量

(三)教師談話

在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯的量,總價和

數量也是兩種相關聯的量.你還能舉出一些例子嗎?

二、新授教學

(一)成正比例的量

例1.一列火車行駛的時間和所行的路程如下表:

時間(時):路程(千米)

1:90

2:180

3:270

4:360

5:450

6:540

7:630

8:720

1.寫出路程和時間的比並計算比值.

(1)2表示什麼?180呢?比值呢?

(2)這個比值表示什麼意義?

(3)360比5可以嗎?為什麼?

2.思考

(1)180千米對應的時間是多少?4小時對應的路程又是多少?

(2)在這一組題中上邊的一列數表示什麼?下邊一列數表示什麼?所求出的比值呢?

教師板書:時間、路程、速度

(3)速度是怎樣得到的?

教師板書:

(4)路程比時間得到了速度,速度也就是比值,比值相當於除法中的什麼?

(5)在這組題中誰與誰是兩種相關聯的量?它們是如何相關聯的?舉例説明變化規律.

3.小結:有什麼規律?

《比例的意義》教案8

 教學內容:教材第99~102頁例1~例3。

教學要求:

1.使學生認識反比例關係的意義,理解、掌握成反比例量的變化規律及其特徵,能依據反比例的意義判斷兩種量成不成反比例關係。

2.進一步培養學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯的量成不成反比例的方法,培養學生判斷、推理的能力。

 教學重點:認識反比例關係的意義。

教學難點:掌握成反比例量的變化規律及其特徵。

教學過程:

一、鋪墊孕伏:

1.正比例關

系的意義是什麼?怎樣用字母表示這種關係?

判斷兩種相關聯量成不成正比例的關鍵是什麼?

2.下面哪兩種量成正比例關係?為什麼?

(1)時間一定,行駛的速度和路程。

(2)數量一定,單價和總價。

3.説一説工作效率、工作時間和工作總量之間的數量關係。(學生回答後老師板書)在什麼條件下,其中兩種量成正比例?

4.引入新課。

如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什麼規律呢?這兩種量又成什麼關係呢?這就是今天要學習的反比例關係。(板書課題)

二、自主探究:

1.教學例2。

出示例2某運輸公司要運一批300噸的貨物。讓學生計算並完成填表任務。

每天運的數量(噸)1020304050

所需的天數

在本上填表,並觀察思考能發現什麼?指名口答,老師板書填表。讓學生按學習正比例的方法觀察表裏內容,相互之間討論,發現了什麼。

指名學生口答討論的結果,得出:

(1)每天運的噸數和需要的天數是兩種相關聯的量,(板書:兩種相關聯的量)需要的天數隨着每天運的噸數的變化而變化。

(2)每天運的噸數縮小,需要的天數反而擴大,每天運的噸數擴大,需要的天數反而縮小。

(3)可以看出它們的變化規律是:每天運的噸數和天數的積總是一定的。(板書:每天運的噸數和天數的積一定)因為每天運的噸數和天數的積都是240。提問:這裏的240是什麼數量?誰能説出這裏的數量關係式?想一想,這個式子表示的是什麼意思?(把上面的板書補充成:運的總噸數一定時,每天運的噸數和天數的積一定)

2.教學例1

出示例1。

請同學們按照剛才學習例4的方法,自己學習例1,仔細想想你發現了些什麼?學生觀察思考後,小組討論:長方形的面積比變,當長髮生變化時,長方形的寬發生變化嗎?變化的規律是怎樣的?

3.概括反比例的意義。

(1)綜合例1、例2的共同點。

提問:請你比較一下例1和例2,説一説,這兩個例題有什麼共同的地方?

(2)概括反比例意義。

例1、例2裏兩種相關聯的量,它們是什麼關係的量呢?請同學們看第101頁1~3自然段。説明:像例1、例2裏這樣兩種相關聯的量,一種量變化,另一種量也隨着變,變化時兩種量中相對應的兩個數的積一定。這樣兩種相關聯的量就叫做成反比例的量,它們之間的關係叫做反比例關係。迫問:兩種相關聯的量成不成反比例的關鍵是什麼?(乘積是不是一定)提問:如果用x和y表示兩種相關聯的量,用k表示它們的乘積,那麼上面這種關係式可以怎樣寫呢?(板書:xy=k(一定))指出:這個式子表示兩種相關聯的量x和y,y隨着x的變化而變化,它們的乘積k是一定的。這時就説x和y成反比例關係。所以,兩種量成反比例關係,我們就用xy=k(一定)來表示。

4.具體認識。

(1)提問:例1裏有哪兩種相關聯的量?這兩種量成反比例關係嗎?為什麼,

例2裏的兩種量成反比例關係嗎?為什麼?

(2)提問:看兩種相關聯的量成不成反比例,關鍵要看什麼?

(3)判斷。

現在回過來看開始寫的關係式:工作效率工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什麼關係?為什麼?指出:根據上面所説的反比例的意義,要知道兩個量成不成反比例關係,只要先看這兩種量是不是相關聯的量,再看兩種量變化時乘積是不是一定。如果兩種相關聯的量變化時乘積一定,它們就是成反比例的量,相互之間的關係就是反比例關係。

5.教學例3。

出示例3,看書自學,小組討論,集體交流。追問:判斷兩種量成不成反比例要怎樣想?其中關鍵是看什麼?

三、鞏固練習

用剛才我們説的判斷方法來做幾道題。

1.做練一練。

指名學生口答,説明理由。(可以寫出數量關係式看一看)

2.下題兩種相關聯量成不成反比例?為什麼?

一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。

3.做練習十二第1題。

四、課堂小結

這節課學習的是什麼內容?反比例關係的意義是什麼?用怎樣的式子表示x和y這兩種相關聯的量成反比例?判斷兩種量是不是成反比例,關鍵是什麼?

五、課堂作業

練習十二第2~4題。

《比例的意義》教案9

教學要求:

1.使學生認識正比例關係的意義,理解、掌握成正比例量的變化規律及其特徵,能依據正比例的意義判斷兩種相關聯的量成不成正比例關係。

2.進一步培養學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯量成不成正比例關係的方法,培養學生判斷、推理的能力。

教學重點:

認識正比例關係的意義。

教學難點:

掌握成正比例量的變化規律及其特徵。

教學過程:

一、複習鋪墊

1.説出下列每組數量之間的關係。

(1)速度時間路程

(2)單價數量總價

(3)工作效率工作時間工作總量

2.引入新課。

上面是已經學過的一些常見數量關係,每組數量中,數量之間是有聯繫的,存在着相依關係。當其中有一個量變化時,另一個量也隨着變化,而且這種變化是有規律的,這節課開始,我們就來研究和認識這種變化規律。今天,先認識正比例關係的意義。(板書課題)

二、自主探究:

1.教學例1。

出示例l。讓學生計算,在課本上填表,並思考能發現什麼。指名口答,老師板書填表。讓學生觀察表裏兩種量變化的數據,思考:

(1)表裏有哪兩種數量,這兩種數量是怎樣變化?

(2)長方形的面積隨着那種量的.變化而變化的?你能看出它們變化的特點嗎?

(3)分別找出面積與款項對應的數,面積與寬的比各是幾比幾?比值各是多少?

引導學生進行討論,得出:

(1)表裏的兩種量是長方形的寬與面積(長與面積)。寬與面積(長與面積)是兩種相關聯的量,(板書:兩種相關聯的量)面積隨着寬(長)的變化而變化。

(2)寬(長)擴大,面積也擴大;寬(長)縮小,面積也縮小。

(3)可以看出它們的變化規律是:面積與寬(面積與長)比的比值總是一定的。(板書:面積和寬比的比值一定)因為面積和寬(面積與長)對應數值比的比值都是5(2)。提問:這裏比值5(2)是什麼數量?誰能説出它的數量關係式?板書:面積/寬=長(一定)面積/長=寬(一定)想一想,這個式子表示的是什麼意思?(把上面板書補充成:長一定時,面積和寬比的比值一定寬一定時,面積和長比的比值一定)

2.教學例2。

出示例2。要求學生按剛才學習例1的方法學習例2,然後把你學習中的發現綜合起來告訴大家。學生觀察思考後,指名回答。然後再提問:這兩種相關聯量的變化規律是什麼?你是怎樣發現的?你能用數量關係式表示出來嗎?誰來説説這個式子表示的意思?(把板書補充成單價一定時,總價和數量比的比值一定)

3.概括正比例的意義。

(1)綜合例1、例2的共同點。

提問:請大家比較例l和例2,你發現這兩個例題有什麼共同的地方?(①都有兩種相關聯的量;②都是一種量隨着另一種量變化;③兩種量裏對應數值的比的比值一定)

(2)概括正比例關係的意義。

像例l、例2裏這樣的兩種相關聯的量是怎樣的關係呢,請同學們看課本第95頁最後連個自然段。説明:根據剛才學習例1、例2時發現的規律,這裏有兩種相關聯的量,一種量變化,另一種量也隨着變化,如果這兩種量中相對應的兩個數的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關係叫做正比例關係。追問;兩種相關聯量成不成正比例的關鍵是什麼?(比值是不是一定)提問:如果用x和y表示兩種相關聯的量,用k表示它們的比值,那麼上面這種數量關係式可以怎樣寫呢?指出:這個式子表示兩種相關聯的量x和y,y隨着x的變化而變化,它們的比值k是一定的。這時就説x和y成正比例關係。所以,兩個量成正比例關係,我們就用式子=k(一定)來表示。

4.教學例3學生看書自學,小組討論,集體交流。

(1)數量與時間是不是兩種相關聯的量?

(2)數量與時間有什麼關係?他們的比值是誰?比值是不是不變的?

(3)判斷數量與時間是不是成正比例?

5.完成97頁練一練。

三、鞏固練習

1.(1)提問:例l裏有哪兩種相關聯的量?這兩種量成正比例關係嗎,為什麼?例2裏的兩種量是不是成正比例的量?為什麼?提問:看兩種相關聯的量是不是成正比例,關鍵要看什麼?

2.做練習十一第1題。

讓學生讀題思考。指名依次口答題裏的問題。指出:根據上面所説的正比例的意義,要知道兩個量是不是成正比例關係,只要先看兩種量是不是相關聯的量,再看兩種量變化時比值是不是一定。如果兩種相關聯的量變化時比值一定,它們就是成正比例的量,相互之間成正比例關係。

3.下列題裏有哪兩種相關聯的量?這兩種量成不成正比例?為什麼?

一種蘋果,買5千克要10元。照這樣計算,買15千克要30元。

四、課堂小結

這節課學習了什麼內容?正比例關係的意義是什麼?用怎樣的式子表示y和x這兩種相關聯的量成正比例?判斷兩種相關聯的量是不是成正比例,關鍵看什麼?關鍵是列出關係式,看是不是比值一定。

五、家庭作業

練習十一第2~6題。

《比例的意義》教案10

教學目標

1、理解比例的意義,能運用比例的意義判斷兩個比能否組成比例,並會組比例。

2、探索國旗中藴含的數學知識,滲透愛國主義教育,提高學生的認知能力。

3、體驗獲得成功的樂趣,建立學好數學的自信心。

教學重難點

教學重點:理解比例的意義。

教學難點:應用比例的意義判斷兩個比能否組成比例。

教學工具

ppt課件

教學過程

請同學們回憶一下上學期我們學過的比的知識,誰能説説:

1、什麼叫做比?比的書寫形式有哪些?

2、什麼叫做比值?

一、情境引入

同學們,每個星期一的早上我們學校都會舉行什麼活動?我們一起説吧。

(生齊聲説:升旗儀式)

課件出示:升旗儀式的情景

你們對這個情景已經非常熟悉了,你們對這面國旗的長和寬分別是多少了解嗎?

不瞭解是吧?那老師告訴大家:

課件出示並介紹:我們這面國旗的長是2.4米、寬是1.6米。

提問:你除了在升旗儀式上還在生活中的哪些地方加到過國旗呢?

指名回答(學校週一升旗時操場上的國旗、會議桌上的國旗、教室後面的國旗、)

在很多的場合像我們的教室、還有大型的慶典活動上我們都可以看到莊嚴的國旗。

那麼你們知道這些國旗的尺寸大小嗎?追問:知道不知道?

那麼下面呢我們看一下老師收集到的一些信息。

課件出示不同場合下的國旗

課件出示:不同場合下的國旗

提問:誰能用最簡短的語言描述一下這四面國旗分別出現在什麼地方?並讀出它的長和寬(1)天安門廣場的國旗,長5米,寬10/3米。

(2)學校的國旗長2.4米,寬1.6米。

(3)教室裏面的國旗長60釐米,寬40釐米。

(4)會議桌上的國旗長15釐米,寬10釐米。

那我們現在看到的這些國旗的大小都一樣嗎?

師小結:在不同的場合的國旗的大小是不一樣的。

追問:它們的形狀相同嗎?(相同)

儘管它們的大小不一樣,但形狀相同。我們看上去每面國旗在我們的眼中還是那麼的莊嚴和美麗,那麼的和諧和統一是嗎?那麼到底按照怎麼樣的標準才能製作出這種大小不同、形狀相同的國旗呢?其實每面國旗的裏面是否也藴含着我們的數學知識呢—比例!(板書課題:比例)下面我們就一起來研究這個問題。

二:探究新知

下面請同學們拿出練習本,聽清要求:

先寫出圖中國旗長與寬的比然後再求出它的比值。

學生自主計算,教師巡視。

提醒:同學們在計算時,一定要認真。注意計算結果的準確性。

哪個同學願意和大家來分享你的成果?和大家勇敢的分享你的成果。指名回答

根據學生彙報並分類板書。

5:10/3=3/2

2.4::16=3/2

60:40=3/2

15:10=3/2

大家同意他的計算結果嗎?

師:請同學們觀察黑板上的計算結果,看看有什麼發現。

指名回答

師小結:説的非常好,這是個很重大的發現,這四面國旗它們的長與寬都有變化,但比值都是3/2 。其實呀不止這兩面紅旗長與寬的比是3:2,所有國旗長與寬的比的比值都是3/2,這在國旗法中有明文規定的

板書:5:10/3 2.4:1.6

師:像這樣的兩個比,它們的比值相等的,也就説這兩個比相等,那麼我們可以用什麼符號把它們連接起來變成一個等式?

來大家一起把這個等式念一下(學生齊讀)5:10/3=2.4:1.6

提問:那麼誰能根據這四個5:10/3=3/2

2.4:1.6=3/2

60:40=3/2

15:10=3/2

相等的比也像老師一樣寫一個等式呢?

指名回答並根據彙報板書

我們寫的這些等式數學上把它叫做比例。誰能根據自己的理解説説什麼叫做比例?指名回答

老師明確:我們把表示兩個比相等的式子叫做比例。(重點強調比值相等)

大家齊讀兩遍,開始。

學生齊讀

這就是我們今天要學習的內容—比例的意義

板書課題

提問:在讀了比例的意義以後,在這句話裏你認為那些字非常重要呢?

指名回答

教師明確:兩個比相等並在這句話的字的下面標上黑點

表示兩個比相等的式子叫做比例。

2、深入理解比例的意義

那大家看一看:15∶3和60∶12能組成比例嗎?你是怎樣判斷的?對,15∶3的比值是5;60∶12的比值也是1.5,所以説15∶3和60∶12能組成比例。

那同學們,要判斷兩個比能不能組成比例,關鍵是看什麼啊?對,判斷兩個比能不能組成比例,關鍵要看它們的比值是否相等。

追問並出示課件:那同學們,要判斷兩個比能不能組成比例,關鍵是看什麼啊?

(指名回答)

大家同意嗎?

對學生的回答進行評價

追問:如果不相等的話,能組成比例嗎?

教學比例的另外一種寫法:同學們知道比還有另外一種寫法(分數的寫法)像2.4:1.6=15:10這個比例還可以寫成2.4/1.6=15/10,這是兩種不同的寫法!

(3)、合作探究:在四面國旗的長和寬的數據中,你還能找出哪些比可以組成比例??

請同學們在小組內討論討論!看哪個小組的同學找的多,開始吧!

班內交流:哪位同學説一説你們小組找出來哪些比例?

同學們真了不起,從這四面大小不同的國旗中,就組成了這麼多不同的比例。比老師找的還多呢,請看屏幕

展示:2.4:1.6 = 60:40 (長:寬=長:寬)

1.6:2.4 = 40:60 (寬:長=寬:長)

2.4:60 =1.6:40 (長:長=寬:寬)

這裏能組成的比例還有很多,同學們課下再找出其他的比例吧!

2、比和比例的區別?

(1)同學們,以前學了比,現在又學比例,那你覺得比和比例一樣嗎?現在老師有個問題需要同學們幫忙解決一下,請看屏幕,“比和比例有什麼區別?”下面請同學們小組內探討,一會兒告訴老師好嗎?好,開始吧!

(2)交流:誰願意來説一説你們小組討論的結果?

(生答)

(3)展示:説的太好了,比由兩個數組成,是一個式子,表示兩個數相除。比例由四個數組成,是一個等式。它是表示兩個比相等的式子。,請看屏幕上的表格

三、智慧城堡

師小結:今天這節課同學們表現得特別好,我們一起去智慧城堡闖闖關同學們有沒有信心?

四、談收穫

這節課,大家都非常積極和認真,老師相信同學們的收穫肯定很多,那誰想來和大家分享一下你的收穫呢?

五、全課總結:

師小結:比例的知識在我們生活中的應用非常廣泛,法國著名的建築物埃菲爾鐵塔,希臘雕像斷臂維納斯,還有閃爍的五角星,這些事物之所以能給我們美感,是因為它們的構造都和一個詞“黃金比例”有關。希望你們課後能從生活中找到更多的“比例”,發現更多的數學知識,到那時,相信你們能夠更深刻的感受到數學知識在我們的生活中真的是無時不在,無處不在。

課後小結

比例的知識在我們生活中的應用非常廣泛,法國著名的建築物埃菲爾鐵塔,希臘雕像斷臂維納斯,還有閃爍的五角星,這些事物之所以能給我們美感,是因為它們的構造都和一個詞“黃金比例”有關。希望你們課後能從生活中找到更多的“比例”,發現更多的數學知識,到那時,相信你們能夠更深刻的感受到數學知識在我們的生活中真的是無時不在,無處不在。

《比例的意義》教案11

教學內容:

比例的意義和基本性質。

教學要求:

使學生理解比例的意義,會用比例的意義正確地判斷兩個比是否 成比例,使學生理解比例的基本性質。

教學重點:

理解比例的意義和基本性質。

教學難點:

靈活地判斷兩個比是否組成比例。

教 具:

投影機等。

教學過程:

一、複習。

1、什麼叫做比?什麼叫做比值?

2、求出下面各比值,哪些比的比值相等?

12:16 : 4.5:2.7 10:6

二、提示課題,引入新課。

1、引入:如果有兩個比是相等的,那麼這兩個相等的比以叫做什麼?它有什麼樣的性質?這節課我們就一起來研究它。

2、引入新課。

三、導演達標。

1、教學比例的意義。

(1)引導學生觀察課本的表格後回答:

A、第一次所行駛的路程和時間的比是什麼?

B、第二次所行駛的路程和時間的比是什麼?

C、這兩次比的比值各是什麼?它們有什麼關係?

板書: 80:2=200:5 或 =

(2)引出比例的意義。

A、表示兩個比相等的式子叫做比例。

B、討論:組成比例必須具備什麼條件?如何判斷兩個比是不是組成比例的?比和比例有什麼區別?

C、判斷兩個比能不能組成比例,關鍵是看兩個比的比值是否相等。

D、做一做。(先練習,後講評)

2、教學比例的基本性質。

(1)看書後回答:

A、什麼叫做比例的項?

B、什麼叫做比例的外項、內項?

(2)引導學生總結規律?

先讓學生計算,兩個外項的積,再計算兩個內項的積,最後讓學生總結出比例的基本性質,然後強調,如果把比例寫成分數形式,比例的基本性質就是等號兩端的分子和分母分別交叉相乘的積相等。

3、練習:判斷下面的哪組比可以組成比例。

6:9和9:12 1.4:2和7:10

四、鞏固練習:第一、二題。(指名回答,集體訂正)

五、總結:今天我們學習了什麼?

比例的意義和比例的基本性質及怎樣判斷兩個比是否可以組成比例的方法。

六、作業:第二題。

《比例的意義》教案12

教學目標:

1、使學生理解和掌握比例的意義和基本性質,認識比例各部分名稱,知道比和比例的區別,能應用比例的意義和比例的基本性質判斷兩個比能否組成比例。

2、激發學生的學習興趣,培養學生初步的觀察、分析、比較、判斷、概括的能力,發展學生思維。

教學重點:

理解比例的意義基本性質。

教學難點:

應用比例的意義和性質判斷兩個比是否成比例。

教學過程

一、導入新課

1、什麼叫比?

2、求出下面各比的比值(小黑板)

12:16 1/4:1/3和9:12 4.5:2.7 10:6

二、教學新課

1、教學比例的意義

(1)出示例1:同學們能寫出多少個有意義的比?觀察這些比,哪此能用等號連接?把能用等號連接的比用等號連接起來。這些式子都是比例,你能用自己的語言説一説什麼是比例嗎?

(2)歸納比例的意義

(3)2:5和80:200能組成比例嗎?你是怎樣判斷的?

(4)完成第45頁“做一做”

2、教學比例的基本性質

(1)在一個比例裏,有四個數,這四個數分別叫什麼名字?

(2)請同們分別找出80:2=200:5和2分之80=5分之200的內項和外項。

(3)你們任意找一個比例,把它們的內項和外項分別乘起來,雙可以發現什麼?

(4)指導學生歸納後,在比例裏,兩個外項的積等於兩個內項的積。這就是比例的基本性質。

(5)指導學生完成第一46頁“做一做”第1題。

三、鞏固練習

四、課堂小結

這節課你學到了哪些知識?

創意作業:

有一房間,窗子的長是6分米,寬是4分米;門的長和寬分別是21分米和14分米,你能用已知的四個數組成多少個比例?比一比哪個同學組成的多。

《比例的意義》教案13

教學目標

1.使學生理解比例的意義,掌握組成比例的條件。

2.使學生能正確地判斷兩個比能否組成比例。

3.認識比例的各部分名稱,掌握比例的基本性質。

教學重點和難點

比例的意義和性質的理解與應用。

教學過程設計

第一部分:比例的意義

(一)複習準備

1.求比值:

2.請你找出比值相等的兩個比。

1.2∶0.4 24∶8 6∶2 1.2∶0.4 24∶8

(二)學習新課

1.一輛汽車第一次2小時行80千米,第二次6小時行240千米,請你説出第一次行駛路程和時間的比。

板書:80∶2

再請你説出第二次行駛路程和時間的比。

板書:240∶6

師:現在你分別求出兩個比的比值。(學生口述,師板書:80∶2=40,240∶6=40)

師:你們觀察一下兩個比的比值怎麼樣?這兩個比之間有沒有關係?(學生互説)

得出:第一個比的比值是40,第二個比的比值也是40。因為比值相等,所以比就相等。(老師板書:兩個比相等,可以用等號把兩個比連起來。)

教師把80∶2和240∶6中間用等號連起來,然後邊指着邊説:“像這樣的式子在數學上是什麼概念呢?這就是我們要學的新內容:比例的意義。”(老師板書課題)

師:至於什麼叫比例以及比例的各部分名稱、組成比例的條件,請你結合思考題看書自學。(告訴學生頁數,從第幾行看到第幾行。)

思考題:

1.什麼叫比例?

2.比例的各部分名稱?

3.組成比例的重要條件?

採取自學→兩人討論→集體討論。

師再次強調組成比例的條件:

A.必須是兩個比。

B.兩個比的比值必須相等。

C.必須是一個式子。

最後得出:表示兩個比相等的式子叫比例。(老師將板書完整化)兩個比表面上看不同,其實質是相同的,也就是比值相同。那麼判斷兩個比能不能組成比例式,關鍵是看比值是否相等,只要比值相等就可以組成比例。

師:上面那些比符合比例的意義嗎?能否組成比例?(學生説,老師連線或讓學生連線。)

比例還有其它書寫格式嗎?請同學們看,老師怎樣寫。

(三)鞏固反饋

1.判斷下面兩個比能否組成比例?

(1)1∶3和3∶9( )

(2)60∶30和160∶80( )

(4)0.2∶0.4和1.6∶4( )

並組成比例。(學生先寫再説)

3.隨意寫比例,互相查看。(至少寫2個)

第二部分:比例的性質

(一)講授比例的性質

讓學生觀察:在比例裏有幾個數?這幾個數叫什麼?這幾個數有沒有區別?

學生髮言,老師小結:比例是由兩個比組成的,組成比例的四個數叫比例的項(老師邊指邊説),靠近等號的(中間的兩項)兩項叫內項,兩端的兩項叫外項。如:

請你指出黑板上比例中的內外項。

現在請你做一件工作:先算出兩個外項的積,再算出兩個內項的積。算完以後你發現什麼規律?學生説算式,老師板書:

通過以上幾道題,使學生看到,在比例裏兩個外項的積等於兩個內項的積。這個規律我們把它叫做比例的性質。(老師把課題補充完整。)

師:這個規律是在什麼前提下成立的呢?必須是在比例裏,才能兩個外項積等於兩個內項的積。

師:你們説説什麼叫比例的性質?這是這節課要掌握的第二個內容。

師:比例寫成分數形式時,比例的性質如何理解呢?

80×6=2×240 1.2×8=24×0.4

即等號兩端的分子、分母分別交叉相乘,積相等,用字母這樣表示:

(二)課堂練習

(放幻燈片)

(1)用比例性質驗證你所寫的比例是否正確?

(2)用2,8,5,20四個數組成比例。

(3)填適當的數。

3∶18=5∶( )

為什麼填30?有幾個答案?

4.8∶0.6=( )∶2

為什麼只能填16?

12∶( )=( )∶5

有幾個答案?

(4)在比例中兩個外項的積是80,那麼這個比例中的內項積一定是幾?為什麼?

(5)在比例中兩個內項分別是45和2,那麼這個比例中的兩個外項積應該是幾?為什麼?

(三)課堂總結

(學生小結這節課所學內容。)

1.質疑:(學生、老師質疑)(幻燈片)

①表示兩個相等的式子叫比例。對嗎?

2.思考題:

(1)根據30×3=45×2寫比例式。

(2)求x:

12∶30=8∶x

能不能應用今天所學的內容解決?怎麼解決?比例的性質還可以應用在什麼問題上?

課堂教學設計説明

本教案是在學生學過比的意義和性質的基礎上設計的,它包括比例的意義和組成比例的各部分名稱,比例的基本性質及應用比例的基本性質解比例問題。本教案分為兩部分,先教授比例的意義,再教授比例的性質。

第一部分,首先通過複習求比值,找出比值相等的比,為教學比例的意義做好鋪墊工作,然後再通過例題,用汽車兩次行駛路程和時間的比,得出兩個比的比值相等,從而概括出比例的意義,再利用比例意義判斷兩個比能否組成比例,老師安排了讓學生寫出比值相等的比,再組成比例,還安排了四個數組比例,目的在於加深對比例意義的認識和理解。

第二部分,教學比例的性質。首先認識比例的各部分名稱,認識內項和外項,然後引導學生計算出在比例中兩個外項積和兩個內項積,從而發現其中的規律,下面通過把比例寫成分數形式,讓學生形象地看到兩個外項積和兩個內項積就是將比例中等號兩端的分子和分母分別交叉相乘,積相等,最後得出比例的性質。讓學生應用比例的性質驗證自己寫的比例成立不成立,使學生明白,驗證比例式是否成立,除了求比值的方法,也可以用求兩個外項積和兩個內項積是否相等的方法。課上安排應用比例性質進行填空練習,進一步加深學生對比例性質的認識與掌握。

另外,在學生沒有提出問題的情況下,老師出了兩道題,目的是鞏固對比例意義的認識與理解,最後老師出的思考題,為解比例做鋪墊工作。

在整個教學過程中,老師要重視學生的全面參與,通過學生動手、動腦、觀察、計算、自學與討論等活動,使學生學會比例的意義和性質。老師可根據本班學生的實際情況可做些調整,這一教學過程的設計,是符合學生的認知規律的,按照這個程序教學是會收到較好的教學效果的。

板書設計

《比例的意義》教案14

教學目標:

1、學生根據具體情境教學,結合實例認識正比例,理解正比例的意義,正比例的意義教學設計。

2、能根據正比例的意義,判斷兩個相關聯的量是不是成正比例。

3、結合豐富的事例,認識正比例,體會數學源於生活,進一步提高學習興趣。教學重點:

結合豐富的事例,認識正比例。能根據正比例的意義,判斷兩個相關聯的量是不是成正比例。

教學難點:

能根據正比例的意義,判斷兩個相關聯的量是不是成正比例。

教學關鍵:

理解成正比例的兩個量的意義。

教學過程:

一、複習準備:

口答

1、已知路程和時間,怎樣求速度?

2、已知總價和數量,怎樣求單價?

3、已知工作總量和工作時間,怎樣求工作效率?

二、數學活動。在學活動的過程中,感受數學思考過程的條理性和數學結論的確定性,並樂於與人交流。

活動一:在情境中感受兩種相關聯的量之間的變化規律。

(一)情境一:

課件出示:

1、觀察圖,分別把正方形的周長與邊長,面積與邊長的變化情況填入表格中。請根據你的觀察,把數據填在表中。

2、填完表以後思考討論,教案《正比例的意義教學設計》。正方形的面積與邊長的變化是否有關係?它們的變化分別有怎樣的規律?規律相同嗎?説説從數據中發現了什麼?

3、小結:正方形的周長和麪積都隨邊長的增加而增加,在變化過程中,正方形的周長與邊長的比值一定都是一定的。

特點是:

①兩種相關聯的量

②一種量擴大(或縮小)另一種量也擴大(或縮小)

③兩種量中相對應的兩個量的比的比值是一定的。

4、正方形的面積與邊長的比是邊長,是一個不確定的值。

學生在小組內練説發現的規律,初步感知正比例的判定。

(二)情境二:

1、一種汽車行駛的速度為90千米/小時。汽車行駛的時間和路程如下:

2、請把下表填寫完整。3、從表中你發現了什麼規律?説説你發現的規律:路程與時間的比值(速度)相同。

(三)情境三:1、一些人買一種蘋果,購買蘋果的質量和應付的錢數如下。

2、把表填寫完整。3、從表中發現了什麼規律?應付的錢數與質量的比值(也就是單價)相同。

3、説説以上兩個例子有什麼共同的特點。

小結:路程隨時間的變化而變化,路程與時間的比值相同;應付的錢數隨購買蘋果的質量的變化而變化,應付的錢數與質量的比值相同。

4、正比例關係:觀察思考成正比例的量有什麼特徵?

小結:

(1)兩種相關聯的量,一種量變化,另一種量也隨着變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關係叫做正比例關係。這就是我們今天要學習的內容。

追問:判斷兩種相關聯的量成不成正比例的關鍵是什麼?(比值是不是一定)

(2)字母表達關係式。

如果字母y和x分別表示兩種相關聯的量,用k表示它們的比值,正比例關係怎樣用字母表示出來?=k(一定)

(3)質疑。

師:根據正比例的意義以及表示正比例關係的式子想一想:構成正比例關係的兩種量必須具備哪些條件?

三、鞏固練習

(一)想一想:請生用自己的語言説一説。與同桌交流,再集體彙報

1、正方形的周長與邊長成正比例嗎?面積與邊長呢?為什麼?

2、根據小明和爸爸的年齡變化情況

把表填寫完整。父子的年齡成正比例嗎?為什麼?

(二):練一練。教師適度點撥引導,強調正比例關係判斷的關鍵。先自己獨立完成,然後集體訂正,説理由。

1、判斷下面各題中的兩個量,是否成正比例,並説明理由。

(1)每袋大米的質量一定,大米的總質量和袋數。

(2)一個人的身高和年齡。

(3)寬不變,長方形的周長與長。

2、根據下表中平行四邊形的面積與高相對應的數值,判斷當底是6釐米的時候,它們是是成正比例,並説明理由。

3、買郵票的枚數與應付的錢數成正比例嗎?填寫表格。先填寫表格,再説明理由

4、畫一畫,你會有新的發現。

綵帶每米4元,購買2米、3米…綵帶分別需要多少錢?

①填一填:(長度:米,價格:元)

②畫一畫,把上表中長度和價錢對應的點描在座標紙上,再順次連接起來。看發現了什麼?

板書:

正比例的意義

①兩種相關聯的量

②一種量擴大(或縮小)另一種量也擴大(或縮小)

③兩種量中相對應的兩個量的比的比值是一定的

路程÷時間=速度(一定)總價÷數量=單價(一定)

=k(一定)

《比例的意義》教案15

教學目標:

1、 使學生理解並掌握比例的意義,認識比例的各部分名稱,探究比例的基本性質,學會應用比例的意義和基本性質判斷兩個比是否能組成比例,並能正確的組成比例。

2、 培養學生的觀察能力、判斷能力。

教學重點:

比例的意義和基本性質

學法:

自主、合作、探究

教學準備:

課件

教學過程:

一:創設情境,導入新課

1、 談話,播放課件,引出主題

師:這節課我們上一節數學課,這節數學課有很多有趣的知識等待着同學們去探索和發現呢!同學們你們有信心接受挑戰嗎?

(播放視頻,生觀察,並説看到的內容)

師:看到這些畫面你的心情怎麼樣?(激動、興奮、驕傲、自豪……)

師:是啊,老師和你們一樣,每當聽到雄壯的國歌聲,看見鮮豔的五星紅旗,老師的心情也十分激動,國旗是我們偉大祖國的象徵,是神聖的。

問:畫面上這幾面國旗有什麼不同?(大小不一樣)

師:雖然這幾面國旗大小不一樣,但是長和寬的比值都是一樣的,這節課我們就來研究有關比例的知識。(板書:比例)

(課件出示主題圖,讓學生説出長和寬各是多少)

問:你能根據這些國旗的長和寬的尺寸,寫出長與寬的比,並求出比值嗎?請同學們先寫出學校內兩面國旗長與寬的比,並求出比值。(生動手寫比、求比值)

二、引導探究,學習新知

1、比例的意義

(生彙報求比值的過程)

師:請同學們觀察你求出的學校內兩面國旗的比值,你有什麼發現?(這兩個比的比值相等)

師:這兩個比的比值相等,我用“=”把這兩個比連起來,可以嗎?(可以)

師:從圖上四面國旗才尺寸中你還能找出哪些比求出比值,也寫成這樣的等式呢?請同學們自己動筆試一試(生動手寫比,求比值,寫等式,並彙報)

師:指學生彙報的等式小結,像這樣由比值相等的兩個比組成的等式就是比例,誰能概括出比例的意義?(板書課題,生彙報,是板書意義)

問:判斷兩個比是否能組成比例,關鍵看什麼?(關鍵看它們的比值是否相等)

(小練習,課件出示)

2探究比例的基本性質

(1)自學比例的名稱

師:小結通過剛才的學習,我們理解了比例的意義,那麼在比例中各部分名稱是怎樣的,各部分名稱與各項在比例中的位置又有什麼關係呢?打開書34頁,自學34也上半部分,比例各部分的名稱。(生自學名稱,彙報,師板書名稱)

(2)合作探究比例的基本性質

師:同學們,你們知道嗎?在比例的內項和外項之間還存在着一個有趣的特性呢!你們想去發現這個特性嗎?接下來就請同學們以小組為單位合作探究比例的基本性質。(板書:比例的基本性質) 課件出示小組合作學習提示,指名讀

各小組派一名代表彙報合作學習發現的規律。

師:是不是所有的比例都具有這樣的特性呢?分組驗證課前寫出的比例式。

師:問想一想,判斷兩個比能不能組成比例除了根據比例的意義去判斷外還可以根據什麼去判斷?(生回答:根據比例的基本性質)

師:如果把比例改寫成分數形式是什麼樣的?生回答。根據比例的基本性質,等號兩邊的分子和分母之間又有什麼關係呢?生回答,師板書

三、鞏固練習(見課件)

四、彙報學習收穫

標籤:教案