糯米文學吧

位置:首頁 > 範文 > 校園

大學聯考數學複合函數有哪些知識點

校園3.12W

不是任何兩個函數都可以複合成一個複合函數,只有當Mx∩Du≠Ø時,二者才可以構成一個複合函數。下面是小編為大家精心推薦數學複合函數知識點總結,希望能夠對您有所幫助。

大學聯考數學複合函數有哪些知識點

  大學聯考數學複合函數知識點歸納

1.複合函數定義域

若函數y=f(u)的定義域是B,u=g(x)的定義域是A,則複合函數y=f[g(x)]的定義域是

D={x|x∈A,且g(x)∈B} 綜合考慮各部分的x的取值範圍,取他們的交集。

求函數的定義域主要應考慮以下幾點:

⑴當為整式或奇次根式時,R的值域;

⑵當為偶次根式時,被開方數不小於0(即≥0);

⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數大於0;

⑷當為指數式時,對零指數冪或負整數指數冪,底不為0(如,中)。

⑸當是由一些基本函數通過四則運算結合而成的,它的定義域應是使各部分都有意義的自變量的值組成的集合,即求各部分定義域集合的交集。

⑹分段函數的定義域是各段上自變量的取值集合的並集。

⑺由實際問題建立的函數,除了要考慮使解析式有意義外,還要考慮實際意義對自變量的要求

⑻對於含參數字母的函數,求定義域時一般要對字母的取值情況進行分類討論,並要注意函數的定義域為非空集合。

⑼對數函數的真數必須大於零,底數大於零且不等於1。

⑽三角函數中的切割函數要注意對角變量的限制。

注:設y=f(u)的最小正週期為T1,μ=φ(x)的最小正週期為T2,則y=f(μ)的最小正週期為T1*T2,任一週期可表示為k*T1*T2(k屬於R+)

2.複合函數單調性

依y=f(u),μ=φ(x)的單調性來決定。即“增+增=增;減+減=增;增+減=減;減+增=減”,可以簡化為“同增異減”。

⑴求複合函數的定義域;

⑵將複合函數分解為若干個常見函數(一次、二次、冪、指、對函數);

⑶判斷每個常見函數的單調性;

⑷將中間變量的取值範圍轉化為自變量的取值範圍;

⑸求出複合函數的單調性。

  三角函數誘導公式記憶口訣

“奇變偶不變,符號看象限”。“奇、偶”指的是π/2的'倍數的奇偶,“變與不變”指的是三角函數的名稱的變化:“變”是指正弦變餘弦,正切變餘切。(反之亦然成立)“符號看象限”的含義是:把角α看做鋭角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成鋭角,所以π/2<(π/2+α)<π,y=cosx在區間(π/2,π)上小於零,所以右邊符號為負,所以右邊為-sinα。

  三角函數誘導公式大全

公式一:設α為任意角,終邊相同的角的同一三角函數的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式二:設α為任意角,π+α的三角函數值與α的三角函數值之間的關係:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:任意角α與-α的三角函數值之間的關係(利用原函數奇偶性):

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α與α的三角函數值之間的關係:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:利用公式一和公式三可以得到2π-α與α的三角函數值之間的關係:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:π/2±α與α的三角函數值之間的關係:

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

cot(π/2-α)=tanα

推算公式:3π/2±α與α的三角函數值之間的關係:

sin(3π/2+α)=-cosα

sin(3π/2-α)=-cosα

cos(3π/2+α)=sinα

cos(3π/2-α)=-sinα

tan(3π/2+α)=-cotα

tan(3π/2-α)=cotα

cot(3π/2+α)=-tanα

cot(3π/2-α)=tanα

兩角和差公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)

二倍角的正弦、餘弦和正切公式

sin2α=2sinαcosα

cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

tan2α=2tanα/[1-tan2(α)]

tan[(1/2)α]=(sinα)/(1+cosα)=(1-cosα)/sinα

半角的正弦、餘弦和正切公式

sin2(α/2)=(1-cosα)/2

cos2(α/2)=(1+cosα)/2

tan2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=(1—cosα)/sinα=sinα/1+cosα

萬能公式

sinα=2tan(α/2)/[1+tan2(α/2)]

cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

tanα=[2tan(α/2)]/[1-tan2(α/2)]

三倍角的正弦、餘弦和正切公式

sin3α=3sinα-4sin3(α)

cos3α=4cos3(α)-3cosα

tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]

三角函數的和差化積公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函數的積化和差公式

sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα·cosβ=0.5[cos(α+β)+cos(α-β)]